Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12193, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842430

RESUMO

CRISPR-Cas12a systems are becoming an attractive genome editing tool for cell engineering due to their broader editing capabilities compared to CRISPR-Cas9 counterparts. As opposed to Cas9, the Cas12a endonucleases are characterized by a lack of trans-activating crRNA (tracrRNA), which reduces the complexity of the editing system and simultaneously makes CRISPR RNA (crRNA) engineering a promising approach toward further improving and modulating editing activity of the CRISPR-Cas12a systems. Here, we design and validate sixteen types of structurally engineered Cas12a crRNAs targeting various immunologically relevant loci in-vitro and in-cellulo. We show that all our structural modifications in the loop region, ranging from engineered breaks (STAR-crRNAs) to large gaps (Gap-crRNAs), as well as nucleotide substitutions, enable gene-cutting in the presence of various Cas12a nucleases. Moreover, we observe similar insertion rates of short HDR templates using the engineered crRNAs compared to the wild-type crRNAs, further demonstrating that the introduced modifications in the loop region led to comparable genome editing efficiencies. In conclusion, we show that Cas12a nucleases can broadly utilize structurally engineered crRNAs with breaks or gaps in the otherwise highly-conserved loop region, which could further facilitate a wide range of genome editing applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Endonucleases/genética , Endonucleases/metabolismo , Edição de Genes , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
2.
Oncogene ; 34(15): 1908-18, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24882579

RESUMO

MicroRNAs (miRNAs) regulate many key cancer-relevant pathways and may themselves possess oncogenic or tumor-suppressor functions. Consequently, miRNA dysregulation has been shown to be a prominent feature in many human cancers. The p53 tumor suppressor acts as a negative regulator of cell proliferation in response to stress and represents the most commonly lost and mutated gene in human cancers. The function of p53 is inhibited by the MDM2 oncoprotein. Using a high-throughput screening approach, we identified miR-339-5p as a regulator of the p53 pathway. We demonstrate that this regulation occurs via the ability of miR-339-5p to target directly the 3'-untranslated region of MDM2 mRNA, reducing MDM2 expression and thus promoting p53 function. Consequently, overexpression of miR-339-5p positively impacts on p53-governed cellular responses such as proliferation arrest and senescence, whereas inhibition of miR-339-5p function perturbs the p53 response in cancer cells, allowing an increased proliferation rate. In addition, miR-339-5p expression is downregulated in tumors harboring wild-type TP53, suggesting that reduction of miR-339-5p level helps to suppress the p53 response in p53-competent tumor cells. Furthermore, we show that a negative correlation between miR-339-5p and MDM2 expression exists in human cancer, implying that the interaction is important for cancer development.


Assuntos
Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação para Baixo , Feminino , Células HEK293 , Humanos , Células MCF-7 , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Transfecção , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...