Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(8): 1286-1302, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266162

RESUMO

TFE3 is a member of the basic helix-loop-helix leucine zipper MiT transcription factor family, and its chimeric proteins are associated with translocation renal cell carcinoma (tRCC). Despite the variety of gene fusions, most TFE3 fusion partner genes are related to spliceosome machinery. Dissecting the function of TFE3 fused to spliceosome machinery factors (TFE3-SF) could direct the development of effective therapies for this lethal disease, which is refractory to standard treatments for kidney cancer. Here, by using a combination of in silico structure prediction, transcriptome profiling, molecular characterization, and high-throughput high-content screening (HTHCS), we interrogated a number of oncogenic mechanisms of TFE3-SF fusions. TFE3-SF fusions drove the transformation of kidney cells and promoted distinct oncogenic phenotypes in a fusion partner-dependent manner, differentially altering the transcriptome and RNA splicing landscape and activating different oncogenic pathways. Inhibiting TFE3-SF dimerization reversed its oncogenic activity and represented a potential target for therapeutic intervention. Screening the FDA-approved drugs library LOPAC and a small-molecule library (Microsource) using HTHCS combined with FRET technology identified compounds that inhibit TFE3-SF dimerization. Hit compounds were validated in 2D and 3D patient-derived xenograft models expressing TFE3-SF. The antihistamine terfenadine decreased cell proliferation and reduced in vivo tumor growth of tRCC. Overall, these results unmask therapeutic strategies to target TFE3-SF dimerization for treating patients with tRCC. SIGNIFICANCE: TFE3-splicing factor fusions possess both transcription and splicing factor functions that remodel the transcriptome and spliceosome and can be targeted with dimerization inhibitors to suppress the growth of translocation renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Fatores de Processamento de RNA/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fusão Gênica , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
2.
Sci Rep ; 13(1): 9163, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280243

RESUMO

Pleomorphic xanthoastrocytoma (PXA) is a rare subset of primary pediatric glioma with 70% 5-year disease free survival. However, up to 20% of cases present with local recurrence and malignant transformation into more aggressive type anaplastic PXA (AXPA) or glioblastoma. The understanding of disease etiology and mechanisms driving PXA and APXA are limited, and there is no standard of care. Therefore, development of relevant preclinical models to investigate molecular underpinnings of disease and to guide novel therapeutic approaches are of interest. Here, for the first time we established, and characterized a patient-derived xenograft (PDX) from a leptomeningeal spread of a patient with recurrent APXA bearing a novel CDC42SE2-BRAF fusion. An integrated -omics analysis was conducted to assess model fidelity of the genomic, transcriptomic, and proteomic/phosphoproteomic landscapes. A stable xenoline was derived directly from the patient recurrent tumor and maintained in 2D and 3D culture systems. Conserved histology features between the PDX and matched APXA specimen were maintained through serial passages. Whole exome sequencing (WES) demonstrated a high degree of conservation in the genomic landscape between PDX and matched human tumor, including small variants (Pearson's r = 0.794-0.839) and tumor mutational burden (~ 3 mutations/MB). Large chromosomal variations including chromosomal gains and losses were preserved in PDX. Notably, chromosomal gain in chromosomes 4-9, 17 and 18 and loss in the short arm of chromosome 9 associated with homozygous 9p21.3 deletion involving CDKN2A/B locus were identified in both patient tumor and PDX sample. Moreover, chromosomal rearrangement involving 7q34 fusion; CDC42SE-BRAF t (5;7) (q31.1, q34) (5:130,721,239, 7:140,482,820) was identified in the PDX tumor, xenoline and matched human tumor. Transcriptomic profile of the patient's tumor was retained in PDX (Pearson r = 0.88) and in xenoline (Pearson r = 0.63) as well as preservation of enriched signaling pathways (FDR Adjusted P < 0.05) including MAPK, EGFR and PI3K/AKT pathways. The multi-omics data of (WES, transcriptome, and reverse phase protein array (RPPA) was integrated to deduce potential actionable pathways for treatment (FDR < 0.05) including KEGG01521, KEGG05202, and KEGG05200. Both xenoline and PDX were resistant to the MEK inhibitors trametinib or mirdametinib at clinically relevant doses, recapitulating the patient's resistance to such treatment in the clinic. This set of APXA models will serve as a preclinical resource for developing novel therapeutic regimens for rare anaplastic PXAs and pediatric high-grade gliomas bearing BRAF fusions.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Criança , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Xenoenxertos , Fosfatidilinositol 3-Quinases/genética , Proteômica , Recidiva Local de Neoplasia/patologia , Astrocitoma/patologia , Glioma/patologia , Mutação , Aberrações Cromossômicas , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
Elife ; 112022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107759

RESUMO

A stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.


Prostate cancer is the fourth most common cancer worldwide, affecting over a million people each year. Existing drug treatments work by blocking the effects or reducing the levels of the hormone testosterone. However, these drug regimens are not always effective, so finding alternative treatments is an important area of research. One option is to target the 'integrated stress response', a pathway that acts as a genetic switch, turning on a group of genes that counteract cellular stress and are essential for the survival of cancer cells. The reason cancer cells are under stress is because they are hungry. They need to make a lot of proteins and other metabolic intermediates to grow and divide, which means they need plenty of amino acids, the building blocks that make up proteins and fuel metabolism. Amino acids enter cells through molecular gates called amino acid transporters, and scientists think the integrated stress response might play a role in this process. One of the integrated stress response components is a protein called General Control Nonderepressible 2, or GCN2 for short. In healthy cells, this protein helps to boost amino acid levels when supplies start to run low. Cordova et al. examined human prostate cancer cells to find out what role GCN2 plays in this cancer. In both lab-grown cells and tissue from patients, GCN2 was active and played a critical role in prostate tumor growth by turning on the genes for amino acid transporters to increase the levels of amino acids entering the cancer cells. Deleting the gene for GCN2, or blocking its effects with an experimental drug, slowed the growth of cultured prostate cancer cells and reduced tumor growth in mice. In these early experiments, Cordova et al. did not notice any toxic side effects to healthy tissues. If GCN2 works in the same way in humans as it does in mice, blocking it might help to control prostate cancer growth. The integrated stress response is also active in other cancer types, so the same logic might apply to different tumors. However, before GCN2 blockers can become treatments, researchers need a more complete understanding of their molecular effects.


Assuntos
Neoplasias da Próstata , eIF-2 Quinase , Animais , Humanos , Masculino , Camundongos , Aminoácidos/metabolismo , Aminoácidos Essenciais , Androgênios , eIF-2 Quinase/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/genética
4.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612255

RESUMO

Establishment of clinically annotated, molecularly characterized, patient-derived xenografts (PDXs) from treatment-naïve and pretreated patients provides a platform to test precision genomics-guided therapies. An integrated multi-OMICS pipeline was developed to identify cancer-associated pathways and evaluate stability of molecular signatures in a panel of pediatric and AYA PDXs following serial passaging in mice. Original solid tumor samples and their corresponding PDXs were evaluated by whole-genome sequencing, RNA-seq, immunoblotting, pathway enrichment analyses, and the drug−gene interaction database to identify as well as cross-validate actionable targets in patients with sarcomas or Wilms tumors. While some divergence between original tumor and the respective PDX was evident, majority of alterations were not functionally impactful, and oncogenic pathway activation was maintained following serial passaging. CDK4/6 and BETs were prioritized as biomarkers of therapeutic response in osteosarcoma PDXs with pertinent molecular signatures. Inhibition of CDK4/6 or BETs decreased osteosarcoma PDX growth (two-way ANOVA, p < 0.05) confirming mechanistic involvement in growth. Linking patient treatment history with molecular and efficacy data in PDX will provide a strong rationale for targeted therapy and improve our understanding of which therapy is most beneficial in patients at diagnosis and in those already exposed to therapy.

5.
Chem Commun (Camb) ; 56(87): 13409-13412, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33035286

RESUMO

Many commonly employed strategies to map kinase activities in live cells require expression of genetically encoded proteins (e.g. FRET sensors). In this work, we describe the development and preliminary application of a set of cell-penetrating, fluorophore labelled peptide substrates for fluorescence lifetime imaging (FLIM) of Abl and Src-family kinase activities. These probes do not rely on FRET pairs or genetically-encoded protein expression. We further demonstrate probe multiplexing and pixel-by-pixel quantification to estimate the relative proportion of modified probe, suggesting that this strategy will be useful for detailed mapping of single cell and subcellular dynamics of multiple kinases concurrently in live cells.


Assuntos
Corantes Fluorescentes/química , Imagem Óptica , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Quinases da Família src/química , Quinases da Família src/metabolismo , Células HeLa , Humanos
6.
Cancer J ; 26(5): 399-406, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32947308

RESUMO

Understanding the complex epigenome of advanced renal cell carcinoma may lead to novel epigenomic-based pharmaceutical strategies and identify new targets for therapeutic interventions. Epigenetic changes, such as DNA methylation and histone acetylation, modulate the activity of significant oncogenic signaling pathways by regulating gene expression. Such pathways include the WNT-ß-catenin pathway, the von Hippel-Lindau-hypoxia-inducible factor pathway, and epithelial-mesenchymal transition pathway. Common genetic alterations in histone modifier genes in renal cell carcinoma may not only be responsible for the pathogenesis of this disease but also represent potential biomarkers of response to immunotherapies. Rational combinations strategies with histone deacetylase inhibitors are being tested in clinic trials. Renal cell carcinoma represents an ideal setting to dissect the epigenetic-driven changes in the tumor microenvironment that modulate the response to targeted therapies.


Assuntos
Carcinoma de Células Renais , Epigênese Genética , Neoplasias Renais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Epigenômica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Microambiente Tumoral/genética
7.
Mol Cancer Ther ; 19(1): 147-156, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582532

RESUMO

Receptor tyrosine kinase inhibitors have shown clinical benefit in clear cell renal cell carcinoma (ccRCC), but novel therapeutic strategies are needed. The angiopoietin/Tie2 and MET pathways have been implicated in tumor angiogenesis, metastases, and macrophage infiltration. In our study, we used trebananib, an angiopoietin 1/2 inhibitor, and a novel small-molecule MET kinase inhibitor in patient-derived xenograft (PDX) models of ccRCC. Our goal was to assess the ability of these compounds to alter the status of tumor-infiltrating macrophages, inhibit tumor growth and metastases, and prolong survival. Seven-week-old SCID mice were implanted subcutaneously or orthotopically with human ccRCC models. One month postimplantation, mice were treated with angiopoietin 1/2 inhibitor trebananib (AMG 386), MET kinase inhibitor, or combination. In our metastatic ccRCC PDX model, RP-R-02LM, trebananib alone, and in combination with a MET kinase inhibitor, significantly reduced lung metastases and M2 macrophage infiltration (P = 0.0075 and P = 0.0205, respectively). Survival studies revealed that treatment of the orthotopically implanted RP-R-02LM tumors yielded a significant increase in survival in both trebananib and combination groups. In addition, resection of the subcutaneously implanted primary tumor allowed for a significant survival advantage to the combination group compared with vehicle and both single-agent groups. Our results show that the combination of trebananib with a MET kinase inhibitor significantly inhibits the spread of metastases, reduces infiltrating M2-type macrophages, and prolongs survival in our highly metastatic ccRCC PDX model, suggesting a potential use for this combination therapy in treating patients with ccRCC.


Assuntos
Angiopoietina-2/genética , Carcinoma de Células Renais/genética , Animais , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos SCID , Metástase Neoplásica , Análise de Sobrevida , Microambiente Tumoral
8.
J Appl Polym Sci ; 136(5)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31534270

RESUMO

Cell encapsulation within 3D hydrogels is an attractive approach to develop effective cell-based therapies. However, little is known about how cells respond to the dynamic microenvironment resulting from hydrogel gelation-based cell encapsulation. Here, a tunable biomimetic hydrogel system that possesses alterable gelation kinetics and biologically relevant matrix stiffness is developed to study 3D dynamic cellular responses during encapsulation. Hydrogels are synthesized by cross-linking thiolated hyaluronic acid and thiolated chondroitin sulfate with polyethylene glycol diacrylate under cell-compatible conditions. Hydrogel properties are tailored by altering thiol substitution degrees of glycosaminoglycans or molecular weights of cross-linkers. Encapsulation of human mesenchymal stem cells through hydrogel gelation reveals high cell viability as well as a three-stage gelation-dependent cellular response in real-time focal adhesion kinase (FAK) phosphorylation in live single cells. Furthermore, stiffer hydrogels result in higher equilibrium FAK activity and enhanced actin protrusions. Our results demonstrate the promise of hydrogel-mediated cellular responses during cell encapsulation.

9.
ACS Sens ; 4(3): 562-565, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30714727

RESUMO

Acetyltransferase is a member of the transferase group responsible for transferring an acetyl group from acetyl-CoA to amino group of a histone lysine residue. Past efforts on histone acetylation monitoring involved biochemical analysis that do not provide spatiotemporal information in a dynamic format. We propose a novel approach to monitor acetyltransferase acetylation in live single cells using time correlated single photon counting fluorescence lifetime imaging (TCSPC-FLIM) with peptide biosensors. Utilizing 2D and 3D cultures we show that the peptide sensor has a specific response to acetyltransferase enzyme activity in a fluorescence lifetime dependent manner ( P < 0.001). Our FLIM biosensor concept enables real-time longitudinal measurement of acetylation activity with high spatial and temporal resolution in live single cells to monitor cell function or evaluate drug effects to treat cancer or neurological diseases.


Assuntos
Técnicas Biossensoriais/métodos , Epigênese Genética , Peptídeos/metabolismo , Acetilação , Acetiltransferases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Imagem Óptica , Análise de Célula Única
10.
Clin Cancer Res ; 24(24): 6383-6395, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30190370

RESUMO

PURPOSE: Diet and healthy weight are established means of reducing cancer incidence and mortality. However, the impact of diet modifications on the tumor microenvironment and antitumor immunity is not well defined. Immunosuppressive tumor-associated macrophages (TAMs) are associated with poor clinical outcomes and are potentially modifiable through dietary interventions. We tested the hypothesis that dietary protein restriction modifies macrophage function toward antitumor phenotypes. EXPERIMENTAL DESIGN: Macrophage functional status under different tissue culture conditions and in vivo was assessed by Western blot, immunofluorescence, qRT-PCR, and cytokine array analyses. Tumor growth in the context of protein or amino acid (AA) restriction and immunotherapy, namely, a survivin peptide-based vaccine or a PD-1 inhibitor, was examined in animal models of prostate (RP-B6Myc) and renal (RENCA) cell carcinoma. All tests were two-sided. RESULTS: Protein or AA-restricted macrophages exhibited enhanced tumoricidal, proinflammatory phenotypes, and in two syngeneic tumor models, protein or AA-restricted diets elicited reduced TAM infiltration, tumor growth, and increased response to immunotherapies. Further, we identified a distinct molecular mechanism by which AA-restriction reprograms macrophage function via a ROS/mTOR-centric cascade. CONCLUSIONS: Dietary protein restriction alters TAM activity and enhances the tumoricidal capacity of this critical innate immune cell type, providing the rationale for clinical testing of this supportive tool in patients receiving cancer immunotherapies.


Assuntos
Dieta com Restrição de Proteínas , Proteínas Alimentares/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Humanos , Imunomodulação , Imunoterapia , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Neoplasias/patologia , Neoplasias/terapia , Poliaminas/metabolismo
11.
Clin Cancer Res ; 24(23): 5977-5989, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30061365

RESUMO

PURPOSE: Translocation renal cell carcinoma (tRCC) represents a rare subtype of kidney cancer associated with various TFE3, TFEB, or MITF gene fusions that are not responsive to standard treatments for RCC. Therefore, the identification of new therapeutic targets represents an unmet need for this disease. EXPERIMENTAL DESIGN: We have established and characterized a tRCC patient-derived xenograft, RP-R07, as a novel preclinical model for drug development by using next-generation sequencing and bioinformatics analysis. We then assessed the therapeutic potential of inhibiting the identified pathway using in vitro and in vivo models. RESULTS: The presence of a SFPQ-TFE3 fusion [t(X;1) (p11.2; p34)] with chromosomal break-points was identified by RNA-seq and validated by RT-PCR. TFE3 chromatin immunoprecipitation followed by deep sequencing analysis indicated a strong enrichment for the PI3K/AKT/mTOR pathway. Consistently, miRNA microarray analysis also identified PI3K/AKT/mTOR as a highly enriched pathway in RP-R07. Upregulation of PI3/AKT/mTOR pathway in additional TFE3-tRCC models was confirmed by significantly higher expression of phospho-S6 (P < 0.0001) and phospho-4EBP1 (P < 0.0001) in established tRCC cell lines compared with clear cell RCC cells. Simultaneous vertical targeting of both PI3K/AKT and mTOR axis provided a greater antiproliferative effect both in vitro (P < 0.0001) and in vivo (P < 0.01) compared with single-node inhibition. Knockdown of TFE3 in RP-R07 resulted in decreased expression of IRS-1 and inhibited cell proliferation. CONCLUSIONS: These results identify TFE3/IRS-1/PI3K/AKT/mTOR as a potential dysregulated pathway in TFE3-tRCC, and suggest a therapeutic potential of vertical inhibition of this axis by using a dual PI3K/mTOR inhibitor for patients with TFE3-tRCC.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/antagonistas & inibidores , Carcinoma de Células Renais/metabolismo , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Neoplasias Renais/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adulto , Animais , Antineoplásicos/uso terapêutico , Sítios de Ligação , Biomarcadores Tumorais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Masculino , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Res ; 78(11): 2886-2896, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29572225

RESUMO

Androgen receptor (AR) plays a crucial role in the development and progression of prostate cancer. AR expression has also been reported in other solid tumors, including renal cell carcinoma (RCC), but its biological role here remains unclear. Through integrative analysis of a reverse phase protein array, we discovered increased expression of AR in an RCC patient-derived xenograft model of acquired resistance to the receptor tyrosine kinase inhibitor (RTKi) sunitinib. AR expression was increased in RCC cell lines with either acquired or intrinsic sunitinib resistance in vitro An AR signaling gene array profiler indicated elevated levels of AR target genes in sunitinib-resistant cells. Sunitinib-induced AR transcriptional activity was associated with increased phosphorylation of serine 81 (pS81) on AR. Additionally, AR overexpression resulted in acquired sunitinib resistance and the AR antagonist enzalutamide-induced AR degradation and attenuated AR downstream activity in sunitinib-resistant cells, also indicated by decreased secretion of human kallikrein 2. Enzalutamide-induced AR degradation was rescued by either proteasome inhibition or by knockdown of the AR ubiquitin ligase speckle-type POZ protein (SPOP). In vivo treatment with enzalutamide and sunitinib demonstrated that this combination efficiently induced tumor regression in a RCC model following acquired sunitinib resistance. Overall, our results suggest the potential role of AR as a target for therapeutic interventions, in combination with RTKi, to overcome drug resistance in RCC.Significance: These findings highlight the therapeutic potential of targeting the androgen receptor to overcome RCC resistance to receptor tyrosine kinase inhibitors. Cancer Res; 78(11); 2886-96. ©2018 AACR.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Fosforilação/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Sunitinibe/farmacologia , Animais , Benzamidas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos SCID , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Calicreínas Teciduais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Cancer Res ; 77(23): 6651-6666, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978636

RESUMO

Acquired and intrinsic resistance to receptor tyrosine kinase inhibitors (RTKi) represents a major hurdle in improving the management of clear cell renal cell carcinoma (ccRCC). Recent reports suggest that drug resistance is driven by tumor adaptation via epigenetic mechanisms that activate alternative survival pathways. The histone methyl transferase EZH2 is frequently altered in many cancers, including ccRCC. To evaluate its role in ccRCC resistance to RTKi, we established and characterized a spontaneously metastatic, patient-derived xenograft model that is intrinsically resistant to the RTKi sunitinib, but not to the VEGF therapeutic antibody bevacizumab. Sunitinib maintained its antiangiogenic and antimetastatic activity but lost its direct antitumor effects due to kinome reprogramming, which resulted in suppression of proapoptotic and cell-cycle-regulatory target genes. Modulating EZH2 expression or activity suppressed phosphorylation of certain RTKs, restoring the antitumor effects of sunitinib in models of acquired or intrinsically resistant ccRCC. Overall, our results highlight EZH2 as a rational target for therapeutic intervention in sunitinib-resistant ccRCC as well as a predictive marker for RTKi response in this disease. Cancer Res; 77(23); 6651-66. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Indóis/farmacologia , Neoplasias Renais/tratamento farmacológico , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Bevacizumab/farmacologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Humanos , Neoplasias Renais/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Neovascularização Patológica/tratamento farmacológico , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
14.
ACS Sens ; 2(8): 1225-1230, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28838242

RESUMO

Phosphorylation is an important post-translational modification implicated in cellular signaling and regulation. However, current methods to study protein phosphorylation by various kinases lack spatiotemporal resolution or the ability to simultaneously observe in real time the activity of multiple kinases in live cells. We present a peptide biosensor strategy with time correlated single photon counting-fluorescence lifetime imaging (TCSPC-FLIM) to interrogate the spatial and temporal dynamics of VEGFR-2 and AKT phosphorylation activity in real time in live 2D and 3D cell culture models at single cell resolution. By recording the increase in fluorescence lifetime due to a change in the solvatochromic environment of the sensor upon phosphorylation, we demonstrate that spatiotemporal maps of protein kinase activity can be obtained. Our results suggest that fluorescence lifetime imaging of peptide biosensors can be effectively and specifically used to monitor and quantify phosphorylation of multiple kinases in live cells.

15.
Immunopharmacol Immunotoxicol ; 39(6): 305-317, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28828896

RESUMO

Trichloroethylene (TCE) is one of the most common ground water contaminants in USA. Even though recent regulation mandates restricted utilization of TCE, its use is not completely prohibited, especially in industrial and manufacturing processes. The risk of TCE on human health is an ongoing field of study and its implications on certain diseases such as cancer has been recognized and well-documented. However, the link between TCE and immune disorders is still an under-studied area. Studies on the risk of TCE on the immune system is usually focused on certain immune class disorders, but consensus on the impact of TCE on the immune system has not been established. This review presents representative work that investigates the effect of TCE on immune disorders and highlights future opportunities. We attempt to provide a broader perspective of the risks of TCE on the immune system and human health.


Assuntos
Doenças do Sistema Imunitário/induzido quimicamente , Sistema Imunitário/efeitos dos fármacos , Tricloroetileno/efeitos adversos , Animais , Humanos , Risco
16.
Analyst ; 142(15): 2713-2716, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28589989

RESUMO

Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase essential for a diverse set of cellular functions. Current methods for monitoring FAK activity in response to an extracellular stimulus lack spatiotemporal resolution and/or the ability to perform multiplex detection. Here we report on a novel approach to monitor the real-time kinase phosphorylation activity of FAK in live single cells by fluorescence lifetime imaging.


Assuntos
Técnicas Biossensoriais , Fluorescência , Proteína-Tirosina Quinases de Adesão Focal/química , Células Cultivadas , Humanos , Microscopia Confocal , Fosforilação , Análise de Célula Única , Tirosina
17.
Toxicol Sci ; 156(1): 261-274, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115643

RESUMO

In this study we evaluated and correlated the cytotoxic effects of zinc oxide nanoparticles (ZnO-NPs) to the epigenetic modifications, using human embryonic kidney (HEK-293) cells as a model system. Imaging of singlet and total reactive oxygen species (ROS) in ZnO-NPs-treated live cells was performed followed by the evaluation of its effects on cytoskeletal, mitochondrial, and nuclear integrity, and on the expression of ROS responsive genes. Next, we determined the global and locus-specific changes in DNA-methylation at the 3 global genomic repeat sequences namely LINE-1, subtelomeric D4Z4 and pericentromeric NBL2, and at the promoter of selected ROS responsive genes (AOX1, HMOX1, NCF2, SOD3). Our studies revealed severe actin depolymerization, increased release of mitochondrial cytochrome C, and nuclear enlargement in ZnO-NPs-treated cells. At the epigenetic level, we observed global reduction in 5-methylcytosine and increase in 5-hydroxymethylcytosine content. Additionally, we observed significant increase in the expression of Ten-Eleven Translocation (TET)-methylcytosine dioxygenase genes but not in the expression of DNA-methyltransferases (DNMTs). Based on our findings, we suggest that ZnO-NPs induce abundant increase in ROS to promote multimodal structural and functional anomalies in cells. Most importantly, ZnO-NP-induced ROS may promote global hypomethylation in cells by triggering the expression of TET-enzymes, avoiding DNMT interferences. Global DNA demethylation is considered to be the hallmark of the majority of cancers and once acquired this could be propagated to future progenies. The present study, hence, can be used as a platform for the assessment of epigenomic toxicity of ZnO-NPs in humans in the light of its use in commercial products.


Assuntos
Desmetilação do DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/agonistas , Óxido de Zinco/toxicidade , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Carcinógenos Ambientais/química , Carcinógenos Ambientais/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Tamanho do Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Humanos , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredutases/genética , Oxirredutases/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sequências Repetitivas de Ácido Nucleico/efeitos dos fármacos , Óxido de Zinco/química
18.
J Appl Toxicol ; 37(6): 699-708, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27917506

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic fluorinated compounds that are highly bioaccumulative and persistent organic pollutants. Perfluorooctanoic acid (PFOA), an eight-carbon chain perfluorinated carboxylic acid, was used heavily for the production of fluoropolymers, but concerns have led to its replacement by shorter carbon chain homologues such as perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA). However, limited toxicity data exist for these substitutes. We evaluated the toxicity of PFOA, PFHxA and PFBA on a zebrafish liver cell line and investigated the effects of exposure on cell metabolism. Gross toxicity after 96 h of exposure was highest for PFOA and PFO- , while PFHxA and PFBA exhibited lower toxicity. Although the structural similarity of these compounds to fatty acids suggests the possibility of interference with the transport and metabolism of lipids, we could not detect any differential expression of peroxisome proliferator-activated receptor (ppar-α, -ß and -γ), fabp3 and crot genes after 96 h exposure to up to 10 ppm of the test compounds. However, we observed localized lipid droplet accumulation only in PFBA-exposed cells. To study the effects of these compounds on cell metabolism, we conducted fluorescence lifetime imaging microscopy using naturally fluorescent biomarkers, NADH and FAD. The fluorescence lifetimes of NADH and FAD and the bound/free ratio of each of these coenzymes decreased in a dose- and carbon length-dependent manner, suggesting disruption of cell metabolism. In sum, our study revealed that PFASs with shorter carbon chains are less toxic than PFOA, and that exposure to sublethal dosage of PFOA, PFHxA or PFBA affects cell metabolism. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Caproatos/toxicidade , Caprilatos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Transporte Biológico , Biomarcadores/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Microscopia de Fluorescência , Relação Estrutura-Atividade , Peixe-Zebra
19.
Chem Res Toxicol ; 29(2): 169-79, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26745549

RESUMO

Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; µg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation.


Assuntos
Actinas/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Peixe-Zebra/genética , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Testes de Toxicidade Aguda , Transcriptoma/efeitos dos fármacos , Tricloroetileno/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
20.
Chem Commun (Camb) ; 52(2): 410-3, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26525744

RESUMO

We propose an ultrasensitive SERS-based peptide biosensor platform to monitor phosphorylation catalyzed by kinase in a dynamic format. The developed SERS strategy has a short response time with potential to monitor phosphorylation in live cells.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Proto-Oncogênicas c-abl/química , Linhagem Celular Tumoral , DNA de Cadeia Simples/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Oligodesoxirribonucleotídeos/química , Fosforilação , Piridinas/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...