Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0293190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862376

RESUMO

Astronomical observatory construction plays an essential role in astronomy research, education, and tourism development worldwide. This study develops siting distribution scenarios for astronomical observatory locations in Indonesia using a suitability analysis by integrating the physical and atmospheric observatory suitability indexes, machine learning models, and long-term climate models. Subsequently, potential sites are equalized based on longitude and latitude zonal divisions considering air pollution disturbance risks. The study novelty comes from the integrated model development of physical and socio-economic factors, dynamic spatiotemporal analysis of atmospheric factors, and the consideration of equitable low air-pollution-disturbance-risk distribution in optimal country-level observatory construction scenarios. Generally, Indonesia comprises high suitability index and low multi-source air pollution risk areas, although some area has high astronomical suitability and high-medium air pollution risk. Most of Java, the east coast of Sumatra, and the west and south coasts of Kalimantan demonstrate "low astronomical suitability-high air pollution risk." A total of eighteen locations are recommended for new observatories, of which five, one, three, four, two, and three are on Sumatra, Java, Kalimantan, Nusa Tenggara, Sulawesi, and Papua, respectively. This study provides a comprehensive approach to determine the optimal observatory construction site to optimize the potential of astronomical activities.


Assuntos
Poluição do Ar , Astronomia , Indonésia , Análise Espaço-Temporal , Escolaridade
2.
Environ Int ; 174: 107888, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36965399

RESUMO

Diesel engines are a major contributor to emissions of both Black Carbon (BC) and ultrafine particles. Analysis of data from the only roadside monitoring site in Europe with a continuous dataset for size-segregated particle number count (Marylebone Road, London) from 2010 to 2021 reveals that the growing number of vehicles fitted with a Diesel Oxidation Catalyst (DOC) and Diesel Particle Filter (DPF) has been very effective in controlling the emissions of solid particles and hence BC, but that there has been little change in the liquid mode (<30 nm) particles, and that concentrations of ultrafine particles (<100 nm) still well exceed the threshold for "high" concentrations (>104 cm-3 /24-hour mean) defined by WHO. BC declined by 81% between 2014 and 2021, but the ultrafine particle (<100 nm) count declined by only 26%. Consequently, in locations worldwide with heavy diesel traffic, concentrations of ultrafine particles are likely to remain "high" for the foreseeable future unless more effective abatement technologies are implemented.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Londres , Tamanho da Partícula
3.
NPJ Clim Atmos Sci ; 5(1): 71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120117

RESUMO

In order to predict the impacts of reductions in air pollutant emissions, it is important to know whether secondary pollutant concentrations will decline in direct proportion to the reduction in their precursor, referred to as linearity. Trends in airborne concentrations of nitrate, sulfate, and SOC at sites in southern England are compared with emissions and concentration trends for sulfur dioxide (SO2), oxides of nitrogen (NO x ), and non-methane VOC, and show some increased ratios of concentrations to emissions, strongly suggestive of non-linearity in the primary-secondary pollutant relationships for nitrate, but not the other pollutants. Analysis of a further 20-year dataset from the AGANET network shows a decline of nitrate concentrations significantly lower than that of NO x emissions and ambient NO x concentrations. For sulfate, the decline lies between that of emissions and airborne concentrations of SO2. Back trajectory analysis and Potential Source Contribution Function mapping for 2014-2018 show that the highest concentrations of secondary constituents in southern England are associated with air masses originating in mainland Europe, with 42% of sulfate, 55% of nitrate, and 35% of SOC estimated to be associated with air masses entering the UK from the European mainland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...