Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1217: 110-8, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18501339

RESUMO

Investigations in macaques and humans have shown that the anterior intraparietal sulcus (IPS) has an important function in the integration of information from tactile and visual object manipulation. The goal of this study was to investigate the special functional role of the anterior IPS in visuo-tactile matching in humans. We used the "virtual-lesion" technique of repetitive transcranial magnetic stimulation (rTMS) to test the functional relevance of anterior IPS for visuo-tactile crossmodal matching. Two crossmodal (visual encoding and tactile recognition and vice versa) and two unimodal delayed matching-to-sample tests with geometrical patterns were performed by 12 healthy subjects. We determined error rates before and after focal low-frequency rTMS applied over the left anterior IPS, right anterior IPS and vertex. During the manipulation of objects with the right hand, rTMS over the left anterior IPS induced a significant deterioration for visual encoding and tactile recognition, but not for tactile encoding and visual recognition. For the visual and tactile unimodal conditions, no significant alterations in task performance were found. rTMS application over right IPS when manipulating objects with the left hand did not affect crossmodal task performance. In conclusion, we have demonstrated an essential functional role of the left anterior IPS for visuo-tactile matching when manipulating objects with the right hand. However, we found no clear evidence for left IPS involvement in tactile encoding and visual recognition. The differential effect of rTMS on tactile and visual encoding and recognition are not consistently explained by previous concepts of visuo-tactile integration.


Assuntos
Lateralidade Funcional/fisiologia , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Tato/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana
2.
Brain Res ; 1072(1): 194-9, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16426588

RESUMO

We used single-pulse transcranial magnetic stimulation (TMS) to study visuospatial attention. TMS was applied over one hemisphere, or simultaneously over both the right and left posterior parietal cortex (PPC), at two different interstimulus intervals (ISI) during a visual detection task. Unilateral TMS over the right and left PPC, respectively, impaired detection of contralateral presented visual stimuli at an ISI of 150 ms. By contrast, simultaneous biparietal TMS induced no significant changes in correct stimulus detection. TMS at an ISI of 250 ms evoked no changes for magnetic stimulation over either the right or the left parietal cortex. These results suggest that both PPC play a crucial role at a relatively early stage in the widely distributed brain network of visuospatial attention. The abolition of behavioral deficits during simultaneous biparietal TMS underlines the common hypothesis that an interhemispheric imbalance might underlie the disorders of neglect and extinction seen following unilateral brain damage.


Assuntos
Atenção , Lateralidade Funcional , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Estimulação Magnética Transcraniana , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Humanos
3.
Neurosci Lett ; 382(3): 312-6, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15925110

RESUMO

Previous studies using short-interval paired-pulse TMS have provided valuable insights into physiology of human motor cortex. Depending on the interstimulus interval (ISI) between the two pulses intra-cortical facilitation (ICF) or intra-cortical inhibition (ICI) can be observed. Similar patterns of inhibition and facilitation have also been demonstrated in prefrontal and parietal cortices. In order to prove whether principles that govern cortical excitability in the motor system also extend to the visual system and to further characterize possible neural correlates of phosphene generation, we applied short-interval paired-pulse TMS to the occipital cortex. In addition, we examined the effect of different coil orientations on perception of phosphenes induced by paired-pulse TMS. In all of 10 healthy subjects, a general facilitation of phosphene perception could be observed for interstimulus intervals of 2-12 ms (conditioning stimulus (CS) 90% and test stimulus (TS) 100% of subject's phosphene threshold) compared to TS alone. With CS intensity decreasing to 80% or less, the effect diminished. No significant changes occurred when TS intensity was increased to 110%. Phosphene perception was enhanced with an induced current direction from lateral to medial at an ISI of 12 ms. Inhibition was not observed in any condition. Our results indicate that the mechanisms underlying phosphene induction in the visual cortex are different from those underlying intracortical inhibition and facilitation in the motor cortex.


Assuntos
Estimulação Elétrica , Fosfenos/fisiologia , Estimulação Magnética Transcraniana , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Limiar Sensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...