Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 41(7): 1397-1406, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36403126

RESUMO

A HydroSpacer implant, that is, a swelling hydrogel confined by a spacer fabric, was developed to repair focal cartilage defects and to prevent progression into osteoarthritis. The present study evaluated the effect of implant placement height in an osteochondral (OC) plug on wear of the opposing and adjacent cartilage. Three-dimensional warp-knitted spacer fabrics, polycaprolactone with poly(4-hydroxybutyrate) pile yarns, were filled with a hyaluronic acid methacrylate and chondroitin sulfate methacrylate hydrogel. After polymerization of the hydrogel, these HydroSpacers were implanted in OC defects (ø 6 mm) created in bovine OC plugs (ø 10 mm) and allowed to swell to equilibrium. A custom-made pin-on-plate wear apparatus was used to apply simultaneous compression and sliding against bovine cartilage. Cartilage damage, visualized with Indian ink, was only seen for the group in which the HydroSpacer was placed flush with the surrounding cartilage. A significant increase on average surface roughness of the sliding path compared to the adjacent cartilage confirmed surface damage for this group. When the implants were recessed (with and without extra hydrogel layer on top of the implant), this damage was not observed, but the cartilage surrounding the implants was compressed (without damage) indicating substantial load sharing with the implant. Furthermore, it was shown that all defects treated with a HydroSpacer implant resulted in shear forces comparable to intact cartilage. Clinical significance: The present study suggests that placing a HydroSpacer implant recessed into the surrounding cartilage would decrease wear of the opposing cartilage. Altogether, this study supports the development of textile-constraining hydrogels for cartilage replacement.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite , Animais , Bovinos , Humanos , Cartilagem Articular/cirurgia , Próteses e Implantes , Hidrogéis
2.
J Orthop Res ; 40(10): 2402-2413, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35128715

RESUMO

The clinical success of osteochondral implants depends significantly on their surface properties. In vivo, an implant may roughen over time which can decrease its performance. The present study investigates whether changes in the surface texture of metal and two types of polycarbonate urethane (PCU) focal knee resurfacing implants (FKRIs) occurred after 6 and 12 months of in vivo articulation with native goat cartilage. PCU implants which differed in stem stiffness were compared to investigate whether the stem fixating the implant in the bone influences surface topography. Using optical profilometry, 19 surface texture parameters were evaluated, including spatial distribution and functional parameters obtained from the material ratio curve. For metal implants, wear during in vivo articulation occurred mainly via material removal, as shown by the significant decrease of the core-valley transition from 91.5% in unused implants to 90% and 89.6% after 6 and 12 months, respectively. Conversely, for PCU implants, the wear mechanism consisted in either filling of the valleys or flattening of the surface by dulling of sharp peaks. This was illustrated in the change in roughness skewness from negative to positive values over 12 months of in vivo articulation. Implants with a softer stem experienced the most deformation, shown by the largest change in material ratio curve parameters. We therefore showed, using a detailed surface profilometry analysis, that the surface texture of metal and two different PCU FKRIs changes in a different way after articulation against cartilage, revealing distinct wear mechanisms of different implant materials.


Assuntos
Cabras , Prótese do Joelho , Animais , Propriedades de Superfície , Uretana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...