Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1084590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875602

RESUMO

The purpose of this study was to explore the mechanism of ABA-induced freezing tolerance increase in grapevines. The specific objectives were to evaluate the impact of ABA treatment on soluble sugar concentration in grape buds and determine the correlations between freezing tolerance and ABA-affected soluble sugar concentration. Vitis spp 'Chambourcin' and Vitis vinifera 'Cabernet franc' were treated with 400 and 600 mg/L ABA in the greenhouse and field. The freezing tolerance and soluble sugar concentration of grape buds were measured monthly during the dormant season in the field and at 2wk, 4wk, and 6wk after ABA application in the greenhouse. It was observed that fructose, glucose, and sucrose are the main soluble sugars that correlate with freezing tolerance of grape buds and the synthesis of these sugars can be enhanced by ABA treatment. This study also found that ABA application can promote raffinose accumulation, however, this sugar may play a more important role in the early acclimation stage. The preliminary results suggest that raffinose accumulated first in buds, then its decrease in mid-winter corresponded with the increase of smaller sugars, such as sucrose, fructose, and glucose, which in turn, corresponded with reaching maximum freezing tolerance. It is concluded that ABA is a cultural practice tool that can be used to enhance freezing tolerance of grapevines.

2.
Plant Sci ; 293: 110437, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081274

RESUMO

Previous studies have demonstrated that the freezing tolerance (FT) of grapevine was enhanced by foliar application of exogenous abscisic acid (exo-ABA), a treatment which might be incorporated into cultural practices to mitigate cold damage in vineyards. To investigate the underlying mechanisms of this response, a two-year (2017 and 2018) study was conducted to characterize the effects of exo-ABA on greenhouse-grown 'Cabernet franc' grapevine. In control grapevines, both physiological (deeper dormancy) and biochemical (sugar accumulation in buds) changes occurred, indicating that grapevines initiated cold acclimation in the greenhouse. Compared to control, exo-ABA decreased stomatal conductance 2 h after application. Two weeks post application, exo-ABA treated grapevines showed accelerated transition of grapevine physiology during cold acclimation (increased depth of dormancy, decreased bud water content and enhanced bud FT), relative to control. Exo-ABA induced the accumulation of several sugars in buds including the raffinose family oligosaccharides (RFOs), and the RFO precursor, galactinol. The expression of raffinose and galactinol synthase genes was higher in exo-ABA treated grapevine buds, compared to control. The new findings from this study have advanced our understanding of the role of ABA in grapevine FT, which will be useful to develop future strategies to protect grapevines from cold damage.


Assuntos
Ácido Abscísico/metabolismo , Aclimatação/fisiologia , Temperatura Baixa , Vitis/metabolismo , Aclimatação/genética , Metabolismo dos Carboidratos , Congelamento , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Rafinose/metabolismo , Açúcares/metabolismo , Vitis/genética , Água/metabolismo
3.
Front Plant Sci ; 7: 818, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379118

RESUMO

Soluble sugars play an important role in freezing tolerance in both herbaceous and woody plants, functioning in both the reduction of freezing-induced dehydration and the cryoprotection of cellular constituents. The quantification of soluble sugars in plant tissues is, therefore, essential in understanding freezing tolerance. While a number of analytical techniques and methods have been used to quantify sugars, most of these are expensive and time-consuming due to complex sample preparation procedures which require the derivatization of the carbohydrates being analyzed. Analysis of soluble sugars using capillary zone electrophoresis (CZE) under alkaline conditions with direct UV detection has previously been used to quantify simple sugars in fruit juices. However, it was unclear whether CZE-based methods could be successfully used to quantify the broader range of sugars present in complex plant extracts. Here, we present the development of an optimized CZE method capable of separating and quantifying mono-, di-, and tri-saccharides isolated from plant tissues. This optimized CZE method employs a column electrolyte buffer containing 130 mM NaOH, pH 13.0, creating a current of 185 µA when a separation voltage of 10 kV is employed. The optimized CZE method provides limits-of-detection (an average of 1.5 ng/µL) for individual carbohydrates comparable or superior to those obtained using gas chromatography-mass spectrometry, and allows resolution of non-structural sugars and cell wall components (structural sugars). The optimized CZE method was successfully used to quantify sugars from grape leaves and buds, and is a robust tool for the quantification of plant sugars found in vegetative and woody tissues. The increased analytical efficiency of this CZE method makes it ideal for use in high-throughput metabolomics studies designed to quantify plant sugars.

4.
Plant Dis ; 99(8): 1087-1097, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30695940

RESUMO

North American grapevine yellows (NAGY) disease has sometimes been attributed to infection of Vitis vinifera L. by Prunus X-disease phytoplasma ('Candidatus Phytoplasma pruni') but this attribution may not be fully adequate. In this study, phytoplasma strains related to 'Ca. Phytoplasma pruni' were found in NAGY-diseased grapevines in Maryland, Pennsylvania, Virginia, Ohio, Missouri, and New York State. Based on restriction fragment length polymorphism analysis of 16S ribosomal RNA gene (16S rDNA) sequences, the strains (termed NAGYIII strains) were classified in group 16SrIII (X-disease group) but they contained a recognition site for the restriction endonuclease MseI that is not present in the 16S rDNA of 'Ca. Phytoplasma pruni'. The 16S rDNA of the strains differed by three or four nucleotides from that of 'Ca. Phytoplasma pruni', indicating that they belonged to two novel 16S rDNA sequevars, designated NAGYIIIα and NAGYIIIß. Both sequevars differed from 'Ca. Phytoplasma pruni' by a single base in each of three regions corresponding to species-unique (signature) sequences described for 'Ca. Phytoplasma pruni'. Phylogenetic analyses of 16S rRNA genes and SecY proteins, and single-nucleotide polymorphism analyses of secY and ribosomal protein genes, further distinguished the two grapevine sequevar lineages from one another and from 'Ca. Phytoplasma pruni'. The NAGYIIIα and NAGYIIIß sequevars also differed from 'Ca. Phytoplasma pruni' in regions of the folded SecY protein that are predicted to be near or exposed at the outer surface of the phytoplasma membrane. No evidence indicated that diseased grapevines contained any phytoplasma strain conforming to 'Ca. Phytoplasma pruni' sensu stricto. Because the NAGYIII sequevars have not been reported in X-disease, a question is raised as to whether NAGYIII and Prunus X-disease are caused by different phytoplasma genotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...