Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1328466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721352

RESUMO

Introduction: Wound healing is characterized as a complicated and sophisticated biological process through which tissue heals and repairs itself after injury. However, the normal wound healing process relies on different growth factors as well as the presence of an accurate cytokine level to ensure appropriate cellular responses. In the case of wound healing, the effects of various growth factors have been studied, but the effects of transforming growth factor beta (TGF-ß) on wound healing have been found to be more significant because of its broad spectrum of impacts on healing the wounded tissues or skins. Methods: In the current study, the impact of TGF-ß3 in bone cells' wound healing was examined in vitro. Furthermore, the activities and characteristics of TGF-ß3, as well as those of related growth factors throughout this wound healing process, were studied under hydrodynamic shear stress conditions as well as static conditions of cultured bone cells. Results: We demonstrated that a positive outcome of TGF-ß3 treatment was found after 24 h under a static condition, while TGF-ß3 treatment was found to be effective under a dynamic condition for wound closure. In the case of the dynamic condition, a full wound closure was obtained after 18 h in both the control and TGF-ß3 treatment, while in the case of static conditions, wounds were found to remain open, even after 24 h, for both the control and TGF-ß3 treatment. Additionally, in the static condition, the wound closure rate with TGF-ß3 treatment was found to be quicker than that of the control flask, which implies that wound healing can be postponed in the static condition. In the dynamic condition, the wound healing process became more rapid in a cultured cell environment. Conclusion: The synergistic effect of TGF-ß3 and hydrodynamic shear stress conditions had a positive impact on increasing wound healing and improving the rate of wound closure.

2.
Front Bioeng Biotechnol ; 12: 1355768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371420

RESUMO

Water security is an important global issue that is pivotal in the pursuit of sustainable resources for future generations. It is a multifaceted concept that combines water availability with the quality of the water's chemical, biological, and physical characteristics to ensure its suitability and safety. Water quality is a focal aspect of water security. Quality index data are determined and provided via laboratory testing using expensive instrumentation with high maintenance costs and expertise. Due to increased practices in this sector that can compromise water quality, innovative technologies such as microfluidics are necessary to accelerate the timeline of test procedures. Microfluidic technology demonstrates sophisticated functionality in various applications due to the chip's miniaturization system that can control the movement of fluids in tiny amounts and be used for onsite testing when integrated with smart applications. This review aims to highlight the basics of microfluidic technology starting from the component system to the properties of the chip's fabricated materials. The published research on developing microfluidic sensor devices for monitoring chemical and biological contaminants in water is summarized to understand the obstacles and challenges and explore future opportunities for advancement in water quality monitoring.

3.
BMC Immunol ; 24(1): 13, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370001

RESUMO

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease affecting different organ systems. This study aimed to determine the concentrations of 30 different human cytokines, chemokines, and growth factors in human plasma to understand the role of these markers in the pathogenicity of SLE using Luminex Multiple Analyte Profiling (xMAP) technology. Plasma samples were obtained from patients with SLE (n = 28), osteoarthritis (OA) (n = 9), and healthy individuals (n = 12) were obtained. High levels of TNF, IL-6, IFN-γ, INF-α, IL-4, IL-5, IL-13, IL-8, IP-10, MIG, MCP-1, MIP-1ß, GM-CSF, G-CSF, EGF, VEGF, IL-12, IL-1RA, and IL-10 was detected in SLE patients compared with the OA and healthy control groups. xMAP analysis has been used to address the differential regulation of clinical heterogeneity and immunological phenotypes in SLE patients. In addition, complete disease phenotyping information along with cytokine immune profiles would be useful for developing personalized treatments for patients with SLE.


Assuntos
Citocinas , Lúpus Eritematoso Sistêmico , Humanos , Feminino , Projetos Piloto , Quimiocinas
4.
Polymers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501526

RESUMO

Polymers are sustainable and renewable materials that are in high demand due to their excellent properties. Natural and synthetic polymers with high flexibility, good biocompatibility, good degradation rate, and stiffness are widely used for various applications, such as tissue engineering, drug delivery, and microfluidic chip fabrication. Indeed, recent advances in microfluidic technology allow the fabrication of polymeric matrix to construct microfluidic scaffolds for tissue engineering and to set up a well-controlled microenvironment for manipulating fluids and particles. In this review, polymers as materials for the fabrication of microfluidic chips have been highlighted. Successful models exploiting polymers in microfluidic devices to generate uniform particles as drug vehicles or artificial cells have been also discussed. Additionally, using polymers as bioink for 3D printing or as a matrix to functionalize the sensing surface in microfluidic devices has also been mentioned. The rapid progress made in the combination of polymers and microfluidics presents a low-cost, reproducible, and scalable approach for a promising future in the manufacturing of biomimetic scaffolds for tissue engineering.

6.
Front Mol Biosci ; 8: 677547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631792

RESUMO

Several attempts have been made to encapsulate indomethacin (IND), to control its sustained release and reduce its side effects. To develop a successful formulation, drug release from a polymeric matrix and subsequent biodegradation need to be achieved. In this study, we focus on combining microfluidic and artificial intelligence (AI) technologies, alongside using biomaterials, to generate drug-loaded polymeric microparticles (MPs). Our strategy is based on using Poly (D,L-lactide-co-glycolide) (PLGA) as a biodegradable polymer for the generation of a controlled drug delivery vehicle, with IND as an example of a poorly soluble drug, a 3D flow focusing microfluidic chip as a simple device synthesis particle, and machine learning using artificial neural networks (ANNs) as an in silico tool to generate and predict size-tunable PLGA MPs. The influence of different polymer concentrations and the flow rates of dispersed and continuous phases on PLGA droplet size prediction in a microfluidic platform were assessed. Subsequently, the developed ANN model was utilized as a quick guide to generate PLGA MPs at a desired size. After conditions optimization, IND-loaded PLGA MPs were produced, and showed larger droplet sizes than blank MPs. Further, the proposed microfluidic system is capable of producing monodisperse particles with a well-controllable shape and size. IND-loaded-PLGA MPs exhibited acceptable drug loading and encapsulation efficiency (7.79 and 62.35%, respectively) and showed sustained release, reaching approximately 80% within 9 days. Hence, combining modern technologies of machine learning and microfluidics with biomaterials can be applied to many pharmaceutical applications, as a quick, low cost, and reproducible strategy.

7.
Membranes (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677509

RESUMO

Membrane proteins are involved in many aspects of cellular biology; for example, they regulate how cells interact with their environment, so such proteins are important drug targets. The rapid advancement in the field of immune effector cell therapy has been expanding the horizons of synthetic membrane receptors in the areas of cell-based immunotherapy and cellular medicine. However, the investigation of membrane proteins, which are key constituents of cells, is hampered by the difficulty and complexity of their in vitro synthesis, which is of unpredictable yield. Cell-free synthesis is herein employed to unravel the impact of the expression construct on gene transcription and translation, without the complex regulatory mechanisms of cellular systems. Through the systematic design of plasmids in the immediacy of the start of the target gene, it was possible to identify translation initiation and the conformation of mRNA as the main factors governing the cell-free expression efficiency of the human voltage-dependent anion channel (VDAC), which is a relevant membrane protein in drug-based therapy. A simple translation initiation model was developed to quantitatively assess the expression potential for the designed constructs. A scoring function that quantifies the feasibility of the formation of the translation initiation complex through the ribosome-mRNA hybridization energy and the accessibility of the mRNA segment binding to the ribosome is proposed. The scoring function enables one to optimize plasmid sequences and semi-quantitatively predict protein expression efficiencies. This scoring function is publicly available as webservice XenoExpressO at University of Vienna, Austria.

8.
Front Mol Biosci ; 8: 651232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869287

RESUMO

We report on the fabrication and characterisation of graphene field-effect transistor (GFET) biosensors for the detection of Clusterin, a prominent protein biomarker of Alzheimer's disease (AD). The GFET sensors were fabricated on Si/SiO2 substrate using photolithographic patterning and metal lift-off techniques with evaporated chromium and sputtered gold contacts. Raman Spectroscopy was performed on the devices to determine the quality of the graphene. The GFETs were annealed to improve their performance before the channels were functionalized by immobilising the graphene surface with linker molecules and anti-Clusterin antibodies. Concentration of linker molecules was also independently verified by absorption spectroscopy using the highly collimated micro-beam light of Diamond B23 beamline. The detection was achieved through the binding reaction between the antibody and varying concentrations of Clusterin antigen from 1 to 100 pg/mL, as well as specificity tests using human chorionic gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFETs were characterized using direct current (DC) 4-probe electrical resistance (4-PER) measurements, which demonstrated a limit of detection of the biosensors to be ∼ 300 fg/mL (4 fM). Comparison with back-gated Dirac voltage shifts with varying concentration of Clusterin show 4-PER measurements to be more accurate, at present, and point to a requirement for further optimisation of the fabrication processes for our next generation of GFET sensors. Thus, we have successfully fabricated a promising set of GFET biosensors for the detection of Clusterin protein biomarker. The developed GFET biosensors are entirely generic and also have the potential to be applied to a variety of other disease detection applications such as Parkinson's, cancer, and cardiovascular.

9.
IEEE Sens J ; 21(12): 13060-13067, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35582203

RESUMO

Since the COVID-19 outbreak was declared a pandemic by the World Health Organization (WHO) in March 2020, ongoing efforts have been made to develop sensitive diagnostic platforms. Detection of viral RNA provides the highest sensitivity and specificity for detection of early and asymptomatic infections. Thus, this work aimed at developing a label-free genosensor composed of graphene as a working electrode that could be embedded into a flex printed circuit board (FPCB) for the rapid, sensitive, amplification-free and label-free detection of SARS-CoV-2. To facilitate liquid handling and ease of use, the developed biosensor was embedded with a user-friendly reservoir chamber. As a proof-of-concept, detection of a synthetic DNA strand matching the sequence of ORF1ab was performed as a two-step strategy involving the immobilization of a biotinylated complementary sequence on a streptavidin-modified surface, followed by hybridization with the target sequence recorded by the differential pulse voltammetric (DPV) technique in the presence of a ferro/ferricyanide redox couple. The effective design of the sensing platform improved its selectivity and sensitivity and allowed DNA quantification ranging from 100 fg/mL to [Formula: see text]/mL. Combining the electrochemical technique with FPCB enabled rapid detection of the target sequence using a small volume of the sample (5-[Formula: see text]). We achieved a limit-of-detection of 100 fg/mL, whereas the predicted value was ~33 fg/mL, equivalent to approximately [Formula: see text] copies/mL and comparable to sensitivities provided by isothermal nucleic acid amplification tests. We believe that the developed approach proves the ability of an FPCB-implemented DNA sensor to act as a potentially simpler and more affordable diagnostic assay for viral infections in Point-Of-Care (POC) applications.

10.
Front Public Health ; 8: 574111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324597

RESUMO

Non-communicable diseases (NCDs) are of increasing concern for society and national governments, as well as globally due to their high mortality rate. The main risk factors of NCDs can be classified into the categories of self-management, genetic factors, environmental factors, factors of medical conditions, and socio-demographic factors. The main focus is on the elements of self-management and to reach a consensus about the influence of food on risk management and actions toward the prevention of NCDs at all stages of life. Nutrition interventions are essential in managing the risk of NCDs. As they are of the utmost importance, this review highlights NCDs and their risk factors and outlines several common prevention strategies. We foresee that the best prevention management strategy will include individual (lifestyle management), societal (awareness management), national (health policy decisions), and global (health strategy) elements, with target actions, such as multi-sectoral partnership, knowledge and information management, and innovations. The most effective preventative strategy is the one that leads to changes in lifestyle with respect to diet, physical activities, cessation of smoking, and the control of metabolic disorders.


Assuntos
Doenças não Transmissíveis , Dieta , Política de Saúde , Humanos , Estilo de Vida , Doenças não Transmissíveis/epidemiologia , Fatores de Risco
11.
Sci Rep ; 10(1): 19517, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177577

RESUMO

In this study, synthetic polymeric particles were effectively fabricated by combining modern technologies of artificial intelligence (AI) and microfluidics. Because size uniformity is a key factor that significantly influences the stability of polymeric particles, therefore, this work aimed to establish a new AI application using machine learning technology for prediction of the size of poly(D,L-lactide-co-glycolide) (PLGA) microparticles produced by diverse microfluidic systems either in the form of single or multiple particles. Experimentally, the most effective factors for tuning droplet/particle sizes are PLGA concentrations and the flow rates of dispersed and aqueous phases in microfluidics. These factors were utilized to develop five different and simple in structure artificial neural network (ANN) models that are capable of predicting PLGA particle sizes produced by different microfluidic systems either individually or jointly merged. The systematic development of ANN models allowed ultimate construction of a single in silico model which consists of data for three different microfluidic systems. This ANN model eventually allowed rapid prediction of particle sizes produced using various microfluidic systems. This AI application offers a new platform for further rapid and economical exploration of polymer particles production in defined sizes for various applications including biomimetic studies, biomedicine, and pharmaceutics.

12.
Sensors (Basel) ; 20(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204503

RESUMO

Designing and development of electrochemical biosensors enable molecule sensing and quantification of biochemical compositions with multitudinous benefits such as monitoring, detection, and feedback for medical and biotechnological applications. Integrating bioinspired materials and electrochemical techniques promote specific, rapid, sensitive, and inexpensive biosensing platforms for (e.g., point-of-care testing). The selection of biomaterials to decorate a biosensor surface is a critical issue as it strongly affects selectivity and sensitivity. In this context, smart biomaterials with the intrinsic self-assemble capability like bacterial surface (S-) layer proteins are of paramount importance. Indeed, by forming a crystalline two-dimensional protein lattice on many sensors surfaces and interfaces, the S-layer lattice constitutes an immobilization matrix for small biomolecules and lipid membranes and a patterning structure with unsurpassed spatial distribution for sensing elements and bioreceptors. This review aims to highlight on exploiting S-layer proteins in biosensor technology for various applications ranging from detection of metal ions over small organic compounds to cells. Furthermore, enzymes immobilized on the S-layer proteins allow specific detection of several vital biomolecules. The special features of the S-layer protein lattice as part of the sensor architecture enhances surface functionalization and thus may feature an innovative class of electrochemical biosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Glicoproteínas de Membrana/isolamento & purificação , Humanos , Íons/química , Íons/isolamento & purificação , Glicoproteínas de Membrana/química , Metais/química , Metais/isolamento & purificação , Testes Imediatos
13.
Biomolecules ; 9(12)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861140

RESUMO

Recently more consideration has been given to the use of renewable materials and agricultural residues. Wheat production is increasing yearly and correspondingly, the volume of by-products from the wheat process is increasing, as well. It is important to find the use of the residuals for higher value-added products, and not just for the food industry or animal feed purposes as it is happening now. Agricultural residue of the roller milled wheat grain is a wheat bran description. The low-cost of wheat bran and its composition assortment provides a good source of substrate for various enzymes and organic acids production and other biotechnological applications. The main purpose of this review article is to look into recent trends, developments, and applications of wheat bran.


Assuntos
Fibras na Dieta , Animais , Biotecnologia , Fibras na Dieta/economia , Fibras na Dieta/metabolismo , Fibras na Dieta/uso terapêutico , Humanos
14.
Biomed Microdevices ; 21(3): 62, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273471

RESUMO

Cells are the basic units of life, and can be mimicked to create artificial analogs enabling the investigation of cellular mechanisms under controlled conditions. Building biomimetic systems ranging from proto-cells to cell-like objects such as compartment membranes can be achieved by collecting biobricks that self-assemble to build simplified models performing specific functions. Hence, scientists can develop and optimize new synthetic cells with biological functions by taking inspiration from nature and exploiting the advantages of synthetic biology. However, the bottom-down approach is not restricted to the basic principles of biological cells, and new mimicry systems can be designed starting with a combination of living and non-living simple molecules to focus on a cellular machinery function. In recent years, microfluidic devices have been well established to engineer bioarchitecture models resembling cell-like structures involving vesicles, compartmentalization, synthetic membranes, and the chip itself as a synthetic cell. This review aims to highlight the role of biological cells and their impact on inspiring the development of biomimetic models. The combination of the principles of synthetic biology with microfluidic technology represents the newly-introduced field of synthetic cells and synthetic membranes that can be further exploited in diagnostic and therapeutic applications.


Assuntos
Biomimética/instrumentação , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Bicamadas Lipídicas/metabolismo
15.
Biophys Chem ; 251: 106178, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102749

RESUMO

Development of synthetic bioarchitectures to improve our understanding of biological systems and produce biosynthetic models with new functions has attracted substantial interest. Synthetic HDL-like phospholipid nanodiscs are a relatively new model of nanoparticles that present a promising carrier for drug delivery and membrane protein investigations. Nanodiscs are soluble nanoscale phospholipid bilayers that are produced based on the self-assembly of phospholipids, membrane scaffold proteins (MSP) and an embedded peptide/protein of interest. To determine the effect of conjugating a protein with a probe, the model protein bovine serum albumin (BSA) with or without FITC conjugation was attached onto 100% 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline (POPC) nanodiscs. The generated discs were analyzed by Fast Protein Liquid Chromatography (FPLC), dynamic light scattering (DLS), and UV-VIS spectroscopy. Empty, BSA- and FITC-BSA-Nanodiscs exhibited different size, charge and elution characteristics as well as different release profiles. Thus, conjugation of proteins to be adsorbed onto nanodiscs surfaces with fluorophores can affect the physical and release properties of nanodiscs, thereby potentially impacting their biophysical, delivery and imaging applications.


Assuntos
Albuminas/química , Sistemas de Liberação de Medicamentos , Bicamadas Lipídicas/química , Nanoestruturas/química , Adsorção , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície
16.
J Med Biochem ; 38(2): 145-152, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30867642

RESUMO

BACKGROUND: Although vitamin D in not a traditional marker for cardiovascular and renal diseases, several studies have proposed a correlation between vitamin D deficiency and these diseases due to the effect of vitamin D on endothelial function. Asymmetric and symmetric dimethyl arginine (ADMA and SDMA, respectively) are endogenous markers of endothelial dysfunction, and are considered as future markers for the assessment of cardiovascular and renal diseases. The present study investigated the association of kidney function tests (urea and creatinine) and dimethylarginine toxins (ADMA and SDMA) in women with vitamin D insufficiency or deficiency. Indeed, sex hormones (estrogen and testosterone) were analyzed in the participants. METHODS: Women were divided into two groups: premenopausal women (younger than 50 years) and postmenopausal women (older than 50 years). Urea, creatinine, estrogen, testosterone, ADMA, and SDMA levels were analyzed when vitamin D level was deficient or insufficient in the participants. RESULTS: The premenopausal women group showed no significant correlations between dimethylarginine toxins and renal failure tests or sex hormones. In the elderly (postmenstrual) women group, only SDMA was significantly correlated with urea and creatinine, while both ADMA and SDMA were not correlated with sex hormones. CONCLUSIONS: Although ADMA and SDMA are promising candidates of endothelial dysfunction and are increased in menopause and aging, no direct link between ADMA and further progression of renal failure was observed in women with low vitamin D levels. In contrast, a possible direct correlation between SDMA and renal dysfunction was noticed, but only in an age-dependent manner.

17.
J Med Biochem ; 37(4): 441-447, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30584403

RESUMO

BACKGROUND: Vitamin D deficiency has been reported to be associated with pregnancy loss. Asymmetric dimethyl-L-arginine (ADMA) and symmetric dimethyl-L-arginine (SDMA) are arginine analogues that have direct and indirect effects on nitric oxide (NO) synthesis and endothelial dysfunction. This study aimed to evaluate ADMA and SDMA levels among women with history of pregnancy loss compared to women without history of pregnancy loss and all participants were suffering from vitamin D deficiency. METHODS: To investigate the relationship between vitamin D deficiency and ADMA and SDMA, both groups of women were experiencing vitamin D deficiency. All women enrolled in this study had a vitamin D level below 75 nmol/L and were not pregnant. ADMA and SDMA levels were investigated in 28 women without a history of pregnancy loss and 19 women with a history of pregnancy loss. RESULTS: No statistically significant differences were found in ADMA and SDMA levels among the two groups. The correlation analysis showed that vitamin D deficiency was not significantly inversely correlated with ADMA and SDMA in women without a history of pregnancy loss, but was significantly correlated with SDMA in women with a history of pregnancy loss. CONCLUSIONS: Vitamin D deficiency, in women with or without a history of failed clinical pregnancies, has no effect on the circulating levels of ADMA and SDMA. Further studies are needed to investigate any possible link between these parameters.

18.
Genes (Basel) ; 9(6)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882823

RESUMO

Understanding the mechanisms that govern nervous tissues function remains a challenge. In vitro two-dimensional (2D) cell culture systems provide a simplistic platform to evaluate systematic investigations but often result in unreliable responses that cannot be translated to pathophysiological settings. Recently, microplatforms have emerged to provide a better approximation of the in vivo scenario with better control over the microenvironment, stimuli and structure. Advances in biomaterials enable the construction of three-dimensional (3D) scaffolds, which combined with microfabrication, allow enhanced biomimicry through precise control of the architecture, cell positioning, fluid flows and electrochemical stimuli. This manuscript reviews, compares and contrasts advances in nervous tissues-on-a-chip models and their applications in neural physiology and disease. Microplatforms used for neuro-glia interactions, neuromuscular junctions (NMJs), blood-brain barrier (BBB) and studies on brain cancer, metastasis and neurodegenerative diseases are addressed. Finally, we highlight challenges that can be addressed with interdisciplinary efforts to achieve a higher degree of biomimicry. Nervous tissue microplatforms provide a powerful tool that is destined to provide a better understanding of neural health and disease.

19.
Genes (Basel) ; 9(3)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509709

RESUMO

Synthetic biology is a rapidly growing multidisciplinary branch of science which aims to mimic complex biological systems by creating similar forms. Constructing an artificial system requires optimization at the gene and protein levels to allow the formation of entire biological pathways. Advances in cell-free synthetic biology have helped in discovering new genes, proteins, and pathways bypassing the complexity of the complex pathway interactions in living cells. Furthermore, this method is cost- and time-effective with access to the cellular protein factory without the membrane boundaries. The freedom of design, full automation, and mimicking of in vivo systems reveal advantages of synthetic biology that can improve the molecular understanding of processes, relevant for life science applications. In parallel, in vitro approaches have enhanced our understanding of the living system. This review highlights the recent evolution of cell-free gene design, proteins, and cells integrated with microfluidic platforms as a promising technology, which has allowed for the transformation of the concept of bioprocesses. Although several challenges remain, the manipulation of biological synthetic machinery in microfluidic devices as suitable 'homes' for in vitro protein synthesis has been proposed as a pioneering approach for the development of new platforms, relevant in biomedical and diagnostic contexts towards even the sensing and monitoring of environmental issues.

20.
Genes (Basel) ; 9(2)2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29462948

RESUMO

Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...