Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(4)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357922

RESUMO

Chronic and elevated levels of the antiviral cytokine IFN-α in the brain are neurotoxic. This is best observed in patients with genetic cerebral interferonopathies such as Aicardi-Goutières syndrome. Cerebral interferonopathies typically manifest in early childhood and lead to debilitating disease and premature death. There is no cure for these diseases with existing treatments largely aimed at managing symptoms. Thus, an effective therapeutic strategy is urgently needed. Here, we investigated the effect of antisense oligonucleotides targeting the murine IFN-α receptor (Ifnar1 ASOs) in a transgenic mouse model of cerebral interferonopathy. Intracerebroventricular injection of Ifnar1 ASOs into transgenic mice with brain-targeted chronic IFN-α production resulted in a blunted cerebral interferon signature, reduced neuroinflammation, restoration of blood-brain barrier integrity, absence of tissue destruction, and lessened neuronal damage. Remarkably, Ifnar1 ASO treatment was also effective when given after the onset of neuropathological changes, as it reversed such disease-related features. We conclude that ASOs targeting the IFN-α receptor halt and reverse progression of IFN-α-mediated neuroinflammation and neurotoxicity, opening what we believe to be a new and promising approach for the treatment of patients with cerebral interferonopathies.


Assuntos
Interferon Tipo I , Doenças do Sistema Nervoso , Pré-Escolar , Humanos , Camundongos , Animais , Doenças Neuroinflamatórias , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Interferon-alfa/genética , Camundongos Transgênicos
2.
Mol Ther Nucleic Acids ; 32: 289-301, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37096163

RESUMO

Antisense oligonucleotides (ASOs) are short synthetic nucleic acids that recognize and bind to complementary RNA to modulate gene expression. It is well established that single-stranded, phosphorothioate-modified ASOs enter cells independent of carrier molecules, primarily via endocytic pathways, but that only a small portion of internalized ASO is released into the cytosol and/or nucleus, rendering the majority of ASO inaccessible to the targeted RNA. Identifying pathways that can increase the available ASO pool is valuable as a research tool and therapeutically. Here, we conducted a functional genomic screen for ASO activity by engineering GFP splice reporter cells and applying genome-wide CRISPR gene activation. The screen can identify factors that enhance ASO splice modulation activity. Characterization of hit genes uncovered GOLGA8, a largely uncharacterized protein, as a novel positive regulator enhancing ASO activity by ∼2-fold. Bulk ASO uptake is 2- to 5-fold higher in GOLGA8-overexpressing cells where GOLGA8 and ASOs are observed in the same intracellular compartments. We find GOLGA8 is highly localized to the trans-Golgi and readily detectable at the plasma membrane. Interestingly, overexpression of GOLGA8 increased activity for both splice modulation and RNase H1-dependent ASOs. Taken together, these results support a novel role for GOLGA8 in productive ASO uptake.

3.
Nucleic Acid Ther ; 32(6): 473-485, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36355073

RESUMO

Nucleic acid-based phosphorothioate containing antisense oligonucleotides (PS-ASOs) have the potential to activate cellular innate immune responses, and the level of activation can vary quite dramatically with sequence. Minimizing the degree of proinflammatory effect is one of the main selection criteria for compounds intended to move into clinical trials. While a recently developed human peripheral blood mononuclear cell (hPBMC)-based assay showed excellent ability to detect innate immune active PS-ASOs, which can then be discarded from the developmental process, this assay is highly resource intensive and easily affected by subject variability. This compelled us to develop a more convenient high-throughput assay. In this study, we describe a new in vitro assay, utilizing a cultured human Bjab cell line, which was developed and validated to identify PS-ASOs that may cause innate immune activation. The assay was calibrated to replicate results from the hPBMC assay. The Bjab assay was designed to be high throughput and more convenient by using RT-qPCR readout of mRNA of the chemokine Ccl22. The Bjab assay was also shown to be highly reproducible and to provide a large dynamic range in determining the immune potential of PS-ASOs through comparison to known benchmark PS-ASO controls that were previously shown to be safe or inflammatory in clinical trials. In addition, we demonstrate that Bjab cells can be used to provide mechanistic information on PS-ASO TLR9-dependent innate immune activation.


Assuntos
Linfoma de Burkitt , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/genética , Linfoma de Burkitt/genética , Linfoma de Burkitt/terapia , Leucócitos Mononucleares , Receptor Toll-Like 9/genética
4.
Nat Commun ; 12(1): 5180, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462437

RESUMO

Heart failure (HF) is a major cause of morbidity and mortality worldwide, highlighting an urgent need for novel treatment options, despite recent improvements. Aberrant Ca2+ handling is a key feature of HF pathophysiology. Restoring the Ca2+ regulating machinery is an attractive therapeutic strategy supported by genetic and pharmacological proof of concept studies. Here, we study antisense oligonucleotides (ASOs) as a therapeutic modality, interfering with the PLN/SERCA2a interaction by targeting Pln mRNA for downregulation in the heart of murine HF models. Mice harboring the PLN R14del pathogenic variant recapitulate the human dilated cardiomyopathy (DCM) phenotype; subcutaneous administration of PLN-ASO prevents PLN protein aggregation, cardiac dysfunction, and leads to a 3-fold increase in survival rate. In another genetic DCM mouse model, unrelated to PLN (Cspr3/Mlp-/-), PLN-ASO also reverses the HF phenotype. Finally, in rats with myocardial infarction, PLN-ASO treatment prevents progression of left ventricular dilatation and improves left ventricular contractility. Thus, our data establish that antisense inhibition of PLN is an effective strategy in preclinical models of genetic cardiomyopathy as well as ischemia driven HF.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/genética , Cardiomiopatias/terapia , Terapia Genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Oligonucleotídeos Antissenso/genética , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatias/metabolismo , Feminino , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Ratos , Ratos Endogâmicos Lew
7.
Innovations (Phila) ; 16(1): 58-62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33124926

RESUMO

OBJECTIVE: Despite advancements in transcatheter aortic valve replacement (TAVR) technology, alternate access strategies are still required when transfemoral access is unsuitable. In these often anatomically complex group of patients, we sought to evaluate the safety and feasibility of suprasternal transinnominate (TI) artery access for TAVR. METHODS: At our institution, 652 patients underwent TAVR from November 2011 through February 2020. Of these, 23 patients underwent TI TAVR via a 5-cm suprasternal incision without special instrumentation. Outcomes of interest were technical considerations, postoperative complications, and perioperative recovery in relation to established access strategies. RESULTS: The mean Society of Thoracic Surgeons risk score was 8.6 ± 4.2 and the average age was 75 ± 8. All patients underwent TI TAVR using a self-expanding (12), or balloon-expandable (11) transcatheter heart valve. Average postoperative stay was 2 ± 0.7 days (range 2 to 4) with most 20/23 (87%) being discharged to home. There was no 30-day mortality or readmission. There was 1 access-site complication and 1 cerebrovascular accident within 30 days, both intraoperative, with excellent recovery. All patients had either trivial (19) or mild (4) aortic regurgitation on 30-day echocardiography. CONCLUSIONS: TAVR via suprasternal TI access is feasible, safe, provides satisfactory perioperative recovery and adds to the options when patients require alternate access. Further data would be optimal to validate this single-center experience.


Assuntos
Estenose da Valva Aórtica , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Idoso , Idoso de 80 Anos ou mais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Artérias , Humanos , Fatores de Risco , Resultado do Tratamento
8.
Am J Respir Cell Mol Biol ; 63(1): 46-56, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32176858

RESUMO

Goblet cell metaplasia, excessive mucus production, and inadequate mucus clearance accompany and exacerbate multiple chronic respiratory disorders, such as asthma and chronic obstructive pulmonary disease. Notch signaling plays a central role in controlling the fate of multiple cell types in the lung, including goblet cells. In the present study, we explored the therapeutic potential of modulating the Notch pathway in the adult murine lung using chemically modified antisense oligonucleotides (ASOs). To this end, we designed and characterized ASOs targeting the Notch receptors Notch1, Notch2, and Notch3 and the Notch ligands Jag1 (Jagged 1) and Jag2 (Jagged 2). Pulmonary delivery of ASOs in healthy mice or mice exposed to house dust mite, a commonly used mouse model of asthma, resulted in a significant reduction of the respective mRNAs in the lung. Furthermore, ASO-mediated knockdown of Jag1 or Notch2 in the lungs of healthy adult mice led to the downregulation of the club cell marker Scgb1a1 and the concomitant upregulation of the ciliated cell marker FoxJ1 (forkhead box J1). Similarly, ASO-mediated knockdown of Jag1 or Notch2 in the house dust mite disease model led to reduced goblet cell metaplasia and decreased mucus production. Because goblet cell metaplasia and excessive mucus secretion are a common basis for many lung pathologies, we propose that ASO-mediated inhibition of JAG1 could provide a novel therapeutic path for the treatment of multiple chronic respiratory diseases.


Assuntos
Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Proteína Jagged-1/metabolismo , Pulmão/efeitos dos fármacos , Metaplasia/tratamento farmacológico , Metaplasia/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Animais , Asma/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Mol Cell ; 77(5): 1032-1043.e4, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31924447

RESUMO

An attractive approach to reduce gene expression is via the use of antisense oligonucleotides (ASOs) that harness the RNase H1 mechanism. Here we show that RNase H ASOs targeted to introns or exons robustly reduce the level of spliced RNA associated with chromatin. Surprisingly, intron-targeted ASOs reduce the level of pre-mRNA associated with chromatin to a greater extent than exon-targeted ASOs. This indicates that exon-targeted ASOs achieve full activity after the pre-mRNA has undergone splicing, but before the mRNA is released from chromatin. Even though RNase H ASOs can reduce the level of RNA associated with chromatin, the effect of ASO-directed RNA degradation on transcription has never been documented. Here we show that intron-targeted ASOs and, to a lesser extent, exon-targeted ASOs cause RNA polymerase II (Pol II) transcription termination in cultured cells and mice. Furthermore, ASO-directed transcription termination is mediated by the nuclear exonuclease XRN2.


Assuntos
Cromatina/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonuclease H/metabolismo , Terminação da Transcrição Genética , Animais , Cromatina/genética , Éxons , Exorribonucleases/genética , Exorribonucleases/metabolismo , Feminino , Células HCT116 , Humanos , Íntrons , Camundongos Endogâmicos C57BL , Modelos Genéticos , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Oligonucleotídeos Antissenso/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , RNA Mensageiro/genética , Ribonuclease H/genética , Fatores de Tempo
10.
BMC Genomics ; 20(1): 164, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819113

RESUMO

BACKGROUND: Microglia are multifunctional cells that are key players in brain development and homeostasis. Recent years have seen tremendous growth in our understanding of the role microglia play in neurodegeneration, CNS injury, and developmental disorders. Given that microglia show diverse functional phenotypes, there is a need for more precise tools to characterize microglial states. Here, we experimentally define gene modules as the foundation for describing microglial functional states. RESULTS: In an effort to develop a comprehensive classification scheme, we profiled transcriptomes of mouse microglia in a stimulus panel with 96 different conditions. Using the transcriptomic data, we generated fine-resolution gene modules that are robustly preserved across datasets. These modules served as the basis for a combinatorial code that we then used to characterize microglial activation under various inflammatory stimulus conditions. CONCLUSIONS: The microglial gene modules described here were robustly preserved, and could be applied to in vivo as well as in vitro conditions to dissociate the signaling pathways that distinguish acutely inflamed microglia from aged microglia. The microglial gene modules presented here are a novel resource for classifying and characterizing microglial states in health and disease.


Assuntos
Senescência Celular/genética , Microglia/metabolismo , Transcriptoma , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células Cultivadas , Regulação para Baixo , Inflamação/genética , Inflamação/metabolismo , Interferon Tipo I/farmacologia , Interferon gama/farmacologia , Camundongos , Fenótipo , Resveratrol/farmacologia , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
11.
Haematologica ; 106(5): 1433-1442, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32439726

RESUMO

ß-thalassemia is a disorder caused by altered hemoglobin protein synthesis and affects individuals worldwide. Severe forms of the disease, left untreated, can result in death before the age of 3 years (1). The standard of care consists of chronic and costly palliative treatment by blood transfusion combined with iron chelation. This dual approach suppresses anemia and reduces iron-related toxicities in patients. Allogeneic bone marrow transplant is an option, but limited by the availability of a highly compatible HSC donor. While gene therapy is been explored in several trials, its use is highly limited to developed regions with centers of excellence and well-established healthcare systems (2). Hence, there remains a tremendous unmet medical need to develop alternative treatment strategies for ß-thalassemia (3). Occurrence of aberrant splicing is one of the processes that affects ß-globin synthesis in ß-thalassemia. The (C>G) IVS-2-745 is a splicing mutation within intron 2 of the ß-globin gene. It leads to an aberrantly spliced mRNA that incorporates an intron fragment. This results in an in-frame premature termination codon that inhibits ß-globin production. Here, we propose the use of uniform 2'-O-methoxyethyl (2'-MOE) splice switching oligos (SSOs) to reverse this aberrant splicing in the pre-mRNA. With these lead SSOs we show aberrant to wild type splice switching. This switching leads to an increase of adult hemoglobin (HbA) up to 80% in erythroid cells from patients with the IVS-2-745 mutation. Furthermore, we demonstrate a restoration of the balance between ß-like- and α-globin chains, and up to an 87% reduction in toxic α-heme aggregates. While examining the potential benefit of 2'-MOE-SSOs in a mixed sickle-thalassemic phenotypic setting, we found reduced HbS synthesis and sickle cell formation due to HbA induction. In summary, 2'-MOE-SSOs are a promising therapy for forms of ß-thalassemia caused by mutations leading to aberrant splicing.

12.
Genome Biol ; 19(1): 4, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29334995

RESUMO

BACKGROUND: About 11% of all human genetic diseases are caused by nonsense mutations that generate premature translation termination codons (PTCs) in messenger RNAs (mRNA). PTCs not only lead to the production of truncated proteins, but also often result in  decreased mRNA abundance due to  nonsense-mediated mRNA decay (NMD). Although pharmacological inhibition of NMD could be an attractive therapeutic approach for the treatment of diseases caused by nonsense mutations, NMD also regulates the expression of 10-20% of the normal transcriptome. RESULTS: Here, we investigate whether NMD can be inhibited to stabilize mutant mRNAs, which may subsequently produce functional proteins, without having a major impact on the normal transcriptome. We develop antisense oligonucleotides (ASOs) to systematically deplete each component in the NMD pathway. We find that ASO-mediated depletion of each NMD factor elicits different magnitudes of NMD inhibition in vitro and are differentially tolerated in normal mice. Among all of the NMD factors, Upf3b depletion is well tolerated, consistent with previous reports that UPF3B is not essential for development and regulates only a subset of the endogenous NMD substrates. While minimally impacting the normal transcriptome, Upf3b-ASO treatment significantly stabilizes the PTC-containing dystrophin mRNA in mdx mice and coagulation factor IX mRNA in a hemophilia mouse model. Furthermore, when combined with reagents promoting translational read-through, Upf3b-ASO treatment leads to the production of functional factor IX protein in hemophilia mice. CONCLUSIONS: These data demonstrate that ASO-mediated reduction of the NMD factor Upf3b could be an effective and safe approach for the treatment of diseases caused by nonsense mutations.


Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , Oligonucleotídeos Antissenso , Proteínas de Ligação a RNA/antagonistas & inibidores , Animais , Células Cultivadas , Distrofina/genética , Fator IX/metabolismo , Hemofilia B/genética , Hemofilia B/metabolismo , Hemofilia B/terapia , Fígado/metabolismo , Camundongos , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Transcriptoma
13.
J Clin Invest ; 128(1): 359-368, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202483

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by duplication of peripheral myelin protein 22 (PMP22) and is the most common hereditary peripheral neuropathy. CMT1A is characterized by demyelination and axonal loss, which underlie slowed motor nerve conduction velocity (MNCV) and reduced compound muscle action potentials (CMAP) in patients. There is currently no known treatment for this disease. Here, we show that antisense oligonucleotides (ASOs) effectively suppress PMP22 mRNA in affected nerves in 2 murine CMT1A models. Notably, initiation of ASO treatment after disease onset restored myelination, MNCV, and CMAP almost to levels seen in WT animals. In addition to disease-associated gene expression networks that were restored with ASO treatment, we also identified potential disease biomarkers through transcriptomic profiling. Furthermore, we demonstrated that reduction of PMP22 mRNA in skin biopsies from ASO-treated rats is a suitable biomarker for evaluating target engagement in response to ASO therapy. These results support the use of ASOs as a potential treatment for CMT1A and elucidate potential disease and target engagement biomarkers for use in future clinical trials.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Neurônios Motores/metabolismo , Proteínas da Mielina/antagonistas & inibidores , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Pele/metabolismo , Potenciais de Ação/genética , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Proteínas da Mielina/biossíntese , Proteínas da Mielina/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Pele/patologia
14.
Nucleic Acids Res ; 45(16): 9528-9546, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934489

RESUMO

A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials.


Assuntos
Regiões 5' não Traduzidas , Oligonucleotídeos Antissenso/farmacologia , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas/genética , Receptores de LDL/genética , Ribonuclease H/genética , Animais , Humanos , Lipoproteínas LDL/farmacocinética , Masculino , Camundongos Endogâmicos BALB C , Oligonucleotídeos Antissenso/química , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Mensageiro/química , Receptores de LDL/metabolismo , Ribonuclease H/metabolismo
15.
Semin Cardiothorac Vasc Anesth ; 21(1): 99-104, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27166401

RESUMO

Tracheal laceration is a known complication of endotracheal intubation. This rare complication remains a diagnostic and management challenge for today's practitioners. This clinical challenge report highlights current surgical and anesthetic management strategies.


Assuntos
Intubação Intratraqueal/efeitos adversos , Complicações Pós-Operatórias/cirurgia , Traqueia/lesões , Traqueia/cirurgia , Feminino , Humanos , Pessoa de Meia-Idade
16.
Nat Immunol ; 17(8): 956-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376470

RESUMO

During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Linfopoese/genética , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Rastreamento de Células , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA3/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Repressoras/genética , Transdução de Sinais , Análise de Célula Única , Proteínas Supressoras de Tumor/genética
17.
Nucleic Acids Res ; 44(11): 5299-312, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27131367

RESUMO

Viable constitutive and tamoxifen inducible liver-specific RNase H1 knockout mice that expressed no RNase H1 activity in hepatocytes showed increased R-loop levels and reduced mitochondrial encoded DNA and mRNA levels, suggesting impaired mitochondrial R-loop processing, transcription and mitochondrial DNA replication. These changes resulted in mitochondrial dysfunction with marked changes in mitochondrial fusion, fission, morphology and transcriptional changes reflective of mitochondrial damage and stress. Liver degeneration ensued, as indicated by apoptosis, fibrosis and increased transaminase levels. Antisense oligonucleotides (ASOs) designed to serve as substrates for RNase H1 were inactive in the hepatocytes from the RNase H1 knockout mice and in vivo, demonstrating that RNase H1 is necessary for the activity of DNA-like ASOs. During liver regeneration, a clone of hepatocytes that expressed RNase H1 developed and partially restored mitochondrial and liver function.


Assuntos
Fígado/metabolismo , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Conformação de Ácido Nucleico , RNA/metabolismo , Ribonuclease H/deficiência , Animais , Análise por Conglomerados , Replicação do DNA , DNA Mitocondrial , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , RNA/química , RNA/genética , Ribonuclease H/metabolismo , Especificidade por Substrato
18.
Nat Commun ; 7: 11171, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048872

RESUMO

The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment.


Assuntos
Linhagem da Célula/genética , Retroalimentação Fisiológica , Fator de Transcrição GATA3/genética , Células-Tronco Hematopoéticas/imunologia , Timócitos/imunologia , Diferenciação Celular , Linhagem da Célula/imunologia , Reprogramação Celular , Criança , Fator de Transcrição GATA3/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/imunologia , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Cultura Primária de Células , Receptor Notch1/genética , Receptor Notch1/imunologia , Transdução de Sinais , Timócitos/citologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
19.
PLoS One ; 10(7): e0132798, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207833

RESUMO

Liver regeneration after partial hepatectomy (PHx) is a complex and well-orchestrated biological process in which synchronized cell proliferation is induced in response to the loss of liver mass. To define long noncoding RNAs (lncRNAs) that participate in the regulation of liver regeneration, we performed microarray analysis and identified more than 400 lncRNAs exhibiting significantly altered expression. Of these, one lncRNA, LncPHx2 (Long noncoding RNA induced by PHx 2), was highly upregulated during liver regeneration. Depletion of LncPHx2 during liver regeneration using antisense oligonucleotides led to a transient increase in hepatocyte proliferation and more rapid liver regeneration. Gene expression analysis showed that LncPHx2 depletion resulted in upregulation of mRNAs encoding proteins known to promote cell proliferation, including MCM components, DNA polymerases, histone proteins, and transcription factors. LncPHx2 interacts with the mRNAs of MCM components, making it a candidate to regulate the expression of MCMs and other genes post-transcriptionally. Collectively, our data demonstrate that LncPHx2 is a key lncRNA that participates in a negative feedback loop modulating hepatocyte proliferation through RNA-RNA interactions.


Assuntos
Proliferação de Células/genética , Hepatectomia , Hepatócitos/fisiologia , Regeneração Hepática/genética , RNA Longo não Codificante/fisiologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , RNA Longo não Codificante/genética , Regulação para Cima/genética
20.
Genes Dev ; 29(8): 832-48, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25846797

RESUMO

The ETS family transcription factor PU.1 is essential for the development of several blood lineages, including T cells, but its function in intrathymic T-cell precursors has been poorly defined. In the thymus, high PU.1 expression persists through multiple cell divisions in early stages but then falls sharply during T-cell lineage commitment. PU.1 silencing is critical for T-cell commitment, but it has remained unknown how PU.1 activities could contribute positively to T-cell development. Here we employed conditional knockout and modified antagonist PU.1 constructs to perturb PU.1 function stage-specifically in early T cells. We show that PU.1 is needed for full proliferation, restricting access to some non-T fates, and controlling the timing of T-cell developmental progression such that removal or antagonism of endogenous PU.1 allows precocious access to T-cell differentiation. Dominant-negative effects reveal that this repression by PU.1 is mediated indirectly. Genome-wide transcriptome analysis identifies novel targets of PU.1 positive and negative regulation affecting progenitor cell signaling and cell biology and indicating distinct regulatory effects on different subsets of progenitor cell transcription factors. Thus, in addition to supporting early T-cell proliferation, PU.1 regulates the timing of activation of the core T-lineage developmental program.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Transativadores/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/genética , Receptores Notch/metabolismo , Células-Tronco , Transativadores/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...