Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 128: 37-44, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30616216

RESUMO

Electrical impedance-based sensing of cell activity has become a powerful analytical tool that allows the monitoring of several relevant biological processes associated with cell evolution and morphology. In these types of biosensors, the electrode design has a direct impact on the sensitivity because it defines the capability of the biosensor to measure small changes in the impedance resulting from cell activities. Herein, impedance-based biosensors arrays with several configurations were successfully developed and used to study the impact of the electrode layout on the dynamics of cultured pre-osteoblast cells. The biosensor design was initially validated by measuring the effect of electrode design on the capacitance of a dielectric polymer (parylene) that mimics the dielectric characteristics of cell populations, results are shown in the Supplementary information section. Results from in vitro cell growth indicate that the optimized design of single electrodes with a diameter of 50 µm, are the most sensitive to cell motion whereas increasing the number of electrodes allows clear differentiation between living and dead cells after 3 h of inducing apoptosis. Apoptosis death was induced with Staurosporine, a chemical mediator of apoptosis in osteoblasts. These impedance results have been validated with optical imaging and flow cytometry analysis that were performed on parallel cultures. Frequency and electrolyte concentration effects are also discussed.


Assuntos
Técnicas Biossensoriais , Osteoblastos/citologia , Apoptose , Linhagem Celular , Humanos , Osteoblastos/química , Polímeros/química , Xilenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA