Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(9): 13518, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985083

RESUMO

We provide corrections for our previous publication [Opt. Express27, 36524 (2019)10.1364/OE.27.036524].

2.
Anal Chem ; 92(23): 15611-15615, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206514

RESUMO

We demonstrate visible pump soft X-ray probe near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements at the carbon K edge on thin molecular films in the laboratory. This opens new opportunities through the use of laboratory equipment for chemical speciation. We investigate the metal-free porphyrin derivative tetra(tert-butyl)porphyrazine as an ideal model system to elucidate electronic properties of tetrapyrroles like chlorophyll or heme. In contrast to measurements in gas or liquid state, the investigation of thin films is of high interest in the field of optoelectronic and photovoltaic devices though challenging due to the low damage thresholds of the samples upon excitation. With a careful pre-characterization using optical techniques, successful measurements were performed using a NEXAFS spectrometer based on a laser-produced plasma source and reflection zone plates with a resolving power of 1000 and a time resolution of 0.5 ns. In combination with density functional theory calculations, first insights into a long-lived excitonic state are gained and discussed.

3.
Opt Express ; 27(25): 36524-36537, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873429

RESUMO

We present a laboratory setup for near edge X-ray absorption spectroscopy (NEXAFS) in the soft X-ray regime between 284 eV to 1303 eV with a resolving power of up to 1370. Based on a laser-produced plasma source, a pair of identical reflection zone plates and an X-ray CCD camera, the setup is intended for optical pump X-ray probe NEXAFS measurements with a detectable change in absorption of the excited sample down to 10-4 and 500 ps time resolution. Because of the high stability of the source the statistical error only depends on the detector response and the number of photons detected and can reach the detector noise limit after a couple of thousands single shots. Thus, structure-function relationship investigations of bio-molecules are rendered feasible in the laboratory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...