Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(13): 2399-2402, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996454

RESUMO

We talk to corresponding author Thomas Gonatopoulos-Pournatzis and co-first authors Arun Prasath Damodaran and Mei-Sheng Xiao about their paper "Genome-scale exon perturbation screens uncover exons critical for cell fitness" (in this issue of Molecular Cell) and get insights into their findings, career trajectories, and future directions in the pre-mRNA processing field.


Assuntos
Éxons , Humanos , História do Século XXI , História do Século XX , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA
2.
Mol Cell ; 84(13): 2553-2572.e19, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38917794

RESUMO

CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces. Conversely, fitness-suppressing exons are enriched in nonessential genes, exhibiting lower inclusion levels, and overlap with intrinsically disordered regions and disease-associated mutations. In-depth mechanistic investigation of the screen-hit TAF5 alternative exon-8 revealed that its inclusion is required for assembly of the TFIID general transcription initiation complex, thereby regulating global gene expression output. Collectively, our orthogonal exon perturbation screens established a comprehensive repository of phenotypically important exons and uncovered regulatory mechanisms governing cellular fitness and gene expression.


Assuntos
Éxons , Humanos , Éxons/genética , Sistemas CRISPR-Cas , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Aptidão Genética , Células HEK293 , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Sítios de Splice de RNA , Mutação , Regulação da Expressão Gênica , Processamento Alternativo
3.
Biochim Biophys Acta Mol Cell Res ; 1867(4): 118650, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953060

RESUMO

Transfection is a powerful tool that enables introducing foreign nucleic acids into living cells in order to study the function of a gene product. Ever since the discovery of transfection many side effects or artifacts caused by transfection reagents have been reported. Here, we show that the transfection reagent, JetPRIME alters the localization of the splicing protein SC35 widely used as a nuclear speckle marker. We demonstrate that transfection of plasmids with JetPRIME leads to enlarged SC35 speckles and SC35 cytoplasmic granules. By contrast, transfection of the same plasmid with Lipofectamine 3000 does not have any effect on SC35 localization. The formation of SC35 cytoplasmic granules by JetPRIME-mediated transfection is independent of exogenous expression by plasmid and although similar in morphology they are distinct from P-bodies and stress granules. This method of transfection affected only SC35 and phosphorylated SR proteins but not the nuclear speckles. The JetPRIME-mediated transfection also showed compromised transcription in cells with enlarged SC35 speckles. Our work indicates that the use of JetPRIME alters SC35 localization and can affect gene expression and alternative splicing. Therefore, caution should be exercised when interpreting results after the use of a transient transfection system, particularly when the subject of the study is the function of a protein in the control of gene expression or mRNA splicing.


Assuntos
Artefatos , Fatores de Processamento de Serina-Arginina/análise , Transfecção , Linhagem Celular Tumoral , Estruturas do Núcleo Celular/química , Grânulos Citoplasmáticos/química , Células HeLa , Humanos , Indicadores e Reagentes , Splicing de RNA , Transcrição Gênica
4.
J Biol Chem ; 294(36): 13224-13232, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31346036

RESUMO

The gene encoding the tumor suppressor p53 is mutated in most cancers. p53 expression is known to be tightly controlled by several E3 ligases. Here, we show that F-box and WD repeat domain-containing 7α (FBW7α), the substrate-recognition component of the SCFFBW7 multiprotein E3 ligase complex, targets both WT and tumor-derived mutants of p53 for proteasomal degradation in multiple human cancer cell lines (HCT116 and U2OS). We found that lack of FBW7α stabilizes p53 levels, thereby increasing its half-life. p53 ubiquitylation and subsequent degradation require the F-box and the C-terminal WD40 repeats in FBW7α. The polyubiquitylation of p53 occurred via Lys-48 linkage and involved phosphorylation on p53 at Ser-33 and Ser-37 by glycogen synthase kinase 3ß (GSK3ß) and DNA-dependent protein kinase (DNA-PK), respectively. These phosphorylation events created a phosphodegron that enhanced p53 binding to FBW7α, allowing for the attachment of polyubiquitin moieties at Lys-132 in p53. FBW7α-dependent p53 polyubiquitylation apparently occurred during and immediately after DNA double-strand breaks induced by either doxorubicin or ionizing radiation. Accordingly, in cells lacking FBW7α, p53 induction was enhanced after DNA damage. Phosphodegron-mediated polyubiquitylation of p53 on Lys-132 had functional consequences, with cells in which FBW7α-mediated p53 degradation was abrogated exhibiting enhancement of their tumorigenic potential. We conclude that p53, which previously has been reported to transactivate FBW7, is also targeted by the same E3 ligase for degradation, suggesting the presence of a regulatory feedback loop that controls p53 levels and functions during DNA damage.


Assuntos
Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células HCT116 , Humanos , Mutação , Fosforilação , Proteína Supressora de Tumor p53/genética , Ubiquitinação
5.
J Cell Sci ; 131(7)2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29555820

RESUMO

During the prometaphase stage of mitosis, the cell builds a bipolar spindle of microtubules that mechanically segregates sister chromatids between two daughter cells in anaphase. The spindle assembly checkpoint (SAC) is a quality control mechanism that monitors proper attachment of microtubules to chromosome kinetochores during prometaphase. Segregation occurs only when each chromosome is bi-oriented with each kinetochore pair attached to microtubules emanating from opposite spindle poles. Overexpression of the protein kinase Aurora A is a feature of various cancers and is thought to enable tumour cells to bypass the SAC, leading to aneuploidy. Here, we took advantage of a chemical and chemical-genetic approach to specifically inhibit Aurora A kinase activity in late prometaphase. We observed that a loss of Aurora A activity directly affects SAC function, that Aurora A is essential for maintaining the checkpoint protein Mad2 on unattached kinetochores and that inhibition of Aurora A leads to loss of the SAC, even in the presence of nocodazole or Taxol. This is a new finding that should affect the way Aurora A inhibitors are used in cancer treatments.This article has an associated First Person interview with the first authors of the paper.


Assuntos
Aurora Quinase A/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Mad2/genética , Prometáfase/genética , Anáfase/genética , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacologia , Linhagem Celular Tumoral , Cromátides/genética , Segregação de Cromossomos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Cinetocoros/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Mitose/genética , Nocodazol/farmacologia , Paclitaxel/farmacologia , Prometáfase/efeitos dos fármacos , Pirimidinas/farmacologia , Fuso Acromático/genética
6.
Trends Pharmacol Sci ; 38(8): 687-700, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28601256

RESUMO

Aurora kinases control multiple events during cell cycle progression and are essential for mitotic and meiotic bipolar spindle assembly and function. There are three Aurora kinases in mammals, some of which have oncogenic properties and all of which are overexpressed in multiple cancers. Pharmaceutical companies quickly made these kinases priority targets for the development of inhibitors to be used as cancer treatments. In this review, we focus on Aurora A, against which several inhibiting compounds have been discovered and made available; however, even though some of these compounds underwent clinical trials, none have yet gone beyond Phase III trials. The varying efficiencies and particularities of these drugs raise several questions that are explored in this review: is Aurora A even a good target? What biomarkers can we use to measure its activity in vivo? How can we improve the Aurora A-inhibiting drugs?


Assuntos
Aurora Quinase A/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Humanos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...