Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746298

RESUMO

The two-dimensional embedding methods t-SNE and UMAP are ubiquitously used for visualizing single-cell data. Recent theoretical research in machine learning has shown that, despite their very different formulation and implementation, t-SNE and UMAP are closely connected, and a single parameter suffices to interpolate between them. This leads to a whole spectrum of visualization methods that focus on different aspects of the data. Along the spectrum, this focus changes from representing local structures to representing continuous ones. In single-cell context, this leads to a trade-off between highlighting rare cell types or continuous variation, such as developmental trajectories. Visualizing the entire spectrum as an animation can provide a more nuanced understanding of the high-dimensional dataset than individual visualizations with either t-SNE or UMAP.

2.
Bioinformatics ; 38(Suppl 1): i316-i324, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758814

RESUMO

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) allows studying the development of cells in unprecedented detail. Given that many cellular differentiation processes are hierarchical, their scRNA-seq data are expected to be approximately tree-shaped in gene expression space. Inference and representation of this tree structure in two dimensions is highly desirable for biological interpretation and exploratory analysis. RESULTS: Our two contributions are an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data, and a visualization method respecting the tree structure. We extract the tree structure by means of a density-based maximum spanning tree on a vector quantization of the data and show that it captures biological information well. We then introduce density-tree biased autoencoder (DTAE), a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space. We compare to other dimension reduction methods and demonstrate the success of our method both qualitatively and quantitatively on real and toy data. AVAILABILITY AND IMPLEMENTATION: Our implementation relying on PyTorch and Higra is available at github.com/hci-unihd/DTAE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Software , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...