Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947754

RESUMO

The high specificity of bacteriophages is driven by their receptor-binding proteins (RBPs). Many Klebsiella bacteriophages target the capsular exopolysaccharide as the receptor and encode RBPs with depolymerase activity. The modular structure of these RBPs with an N-terminal structural module to attach the RBP to the phage tail, and a C-terminal specificity module for exopolysaccharide degradation, supports horizontal transfer as a major evolutionary driver for Klebsiella phage RBPs. We mimicked this natural evolutionary process by the construction of modular RBP chimeras, exchanging N-terminal structural modules and C-terminal specificity modules. All chimeras strictly follow the capsular serotype specificity of the C-terminal module. Transplanting chimeras with a K11 N-terminal structural RBP module in a Klebsiella phage K11 scaffold results in a capsular serotype switch and corresponding host range modification of the synthetic phages, demonstrating that horizontal transfer of C-terminal specificity modules offers Klebsiella phages an evolutionary highway for rapid adaptation to new capsular serotypes.IMPORTANCE The antimicrobial resistance crisis has rekindled interest in bacteriophage therapy. Phages have been studied over a century as therapeutics to treat bacterial infections, but one of the biggest challenges for the use of phages in therapeutic interventions remains their high specificity. In particular, many Klebsiella phages have a narrow spectrum constrained by the high diversity of exopolysaccharide capsules that shield access to the cells. In this work, we have elaborated how Klebsiella phages deal with this high diversity by exchanging building blocks of their receptor-binding proteins.


Assuntos
Bacteriófagos/genética , Klebsiella/virologia , Sorogrupo , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Cápsulas Bacterianas , Bacteriófagos/química , Bacteriófagos/metabolismo , Proteínas de Transporte/metabolismo , Genoma Viral , Ligação Proteica , Proteínas da Cauda Viral/química
2.
Adv Exp Med Biol ; 1148: 233-253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482502

RESUMO

Antibiotics have saved millions of lives. However, the overuse and misuse of antibiotics have contributed to a rapid emergence of antibiotic resistance worldwide. In addition, there is an unprecedented void in the development of new antibiotic classes by the pharmaceutical industry since the first introduction of antibiotics. This antibiotic crisis underscores the urgent and increasing necessity of new, innovative antibiotics. Enzybiotics are such a promising class of antibiotics. They are derived from endolysins, bacteriophage-encoded enzymes that degrade the bacterial cell wall of the infected cell at the end of the lytic replication cycle. Enzybiotics are featured by a rapid and unique mode-of-action, a high specificity to kill pathogens, a low probability for bacterial resistance development and a proteinaceous nature. (Engineered) endolysins have been demonstrated to be effective in a variety of animal models to combat both Gram-positive and Gram-negative bacteria and have entered different phases of preclinical and clinical trials. In addition, mycobacteriophage-encoded endolysins have been successfully used to inhibit mycobacteria in vitro. In this chapter we focus on the (pre)clinical progress of enzybiotics as potent therapeutic agent against human pathogenic bacteria.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/terapia , Bacteriófagos/enzimologia , Enzimas/farmacologia , Animais , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos
3.
Biochem Soc Trans ; 47(1): 449-460, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30783013

RESUMO

Bacteriophages and phage tail-like bacteriocins (PTLBs) rely on receptor-binding proteins (RBPs) located in tail fibers or spikes for an initial and specific interaction with susceptible bacteria. Bacteriophages kill bacteria through a lytic, replicative cycle, whereas PTLBs kill the target through membrane depolarization in a single hit mechanism. Extensive efforts in the engineering of RBPs of both phages and PTLBs have been undertaken to obtain a greater understanding of the structural organization of RBPs. In addition, a major goal of engineering RBPs of phages and PTLBs is the production of antibacterials with a customized spectrum. Swapping of the RBP of phages and PTLBs results in a shift in activity spectrum in accordance with the spectrum of the new RBP. The engineering of strictly virulent phages with new RBPs required significant technical advances in the past decades, whereas the engineering of RBPs of PTLBs relied on the traditional molecular techniques used for the manipulation of bacteria and was thus relatively straightforward. While phages and PTLBs share their potential for specificity tuning, specific features of phages such as their lytic killing mechanism, their self-replicative nature and thus different pharmacokinetics and their potential to co-evolve are clear differentiators compared with PTLBs in terms of their antibacterial use.


Assuntos
Bacteriocinas/genética , Bacteriófagos/genética , Engenharia de Proteínas , Proteínas da Cauda Viral/genética , Genoma Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...