Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(8): 5359-5373, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39045793

RESUMO

Inspired by the animal skin fiber network, we developed an electronic skin (e-skin) utilizing natural sheepskin as the primary substrate. This innovative design addresses the limitations of conventional e-skins, including inadequate mechanical strength, overly complex artificial network construction, and limited health monitoring capabilities. This e-skin successfully retains the structure and properties of natural sheepskin while exhibiting exceptional mechanical strength (with a breaking strength of 4.01 MPa) and high elongation (with an elongation at a break of 304.8%). Moreover, it possesses various desirable attributes such as electrical conductivity, antibacterial properties, biocompatibility, and environmental stability. In addition, this e-skin has the advantage of diverse data collection (joint movement, bioelectricity, foot health detection, and speech disorder communication systems). Therefore, this e-skin breaks the traditional construction strategy and single-mode application and is expected to become an ideal material for building smart sensor devices.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Animais , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Pele/patologia , Condutividade Elétrica , Materiais Biocompatíveis/química
2.
Int J Biol Macromol ; 259(Pt 1): 128389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000600

RESUMO

Hemostatic materials that are lightweight and possess good blood absorption performance have been widely considered for use in modern wound care. Natural hemostatic ingredients derived from traditional Chinese medicine have also received extensive attention. Bletilla polysaccharides are valued by researchers for their excellent hemostatic performance and good reactivity. Collagen is favored by researchers due to its high biocompatibility and low immunogenicity. In this study, Bletilla striata polysaccharide, the main hemostatic component of Bletilla striata, was activated by epoxy groups, and epoxidized Bletilla striata polysaccharide (EBSP) was prepared. Then, EBSP was crosslinked with collagen under alkaline conditions, and a new hemostatic material that was an epoxidized Bletilla polysaccharide crosslinked collagen hemostatic sponge was prepared. We demonstrated that endowing collagen with better hemostatic performance, cytocompatibility, and blood compatibility does not destroy its original three-stranded helical structure. Compared with the medical gauze, hemostasis time was shorter (26.75 ±â€¯2.38 s), and blood loss was lower (0.088 ±â€¯0.051 g) in the rat liver injury hemostasis model. In the rat model of severed tail hemostasis, hemostasis time was also shorter (47.33 ±â€¯2.05 s), and the amount of blood loss was lower (0.330 ±â€¯0.122 g). The sponge possessed good hemostatic and healing performance.


Assuntos
Hemostáticos , Orchidaceae , Ratos , Animais , Hemostáticos/farmacologia , Hemostasia , Colágeno/farmacologia , Cicatrização , Polissacarídeos/farmacologia , Polissacarídeos/química , Hemorragia/tratamento farmacológico , Orchidaceae/química
3.
Soft Matter ; 19(48): 9478-9488, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38031429

RESUMO

The prevention of bacterial infection and prompt wound repair are crucial considerations when local skin tissue is compromised by burns, cuts, or similar injuries. Porcine acellular dermal matrix (pADM) is a commonly employed biological material in wound repair due to its inherent natural properties. Nonetheless, the pADM's primary constituent, collagen fibers, lacks antimicrobial properties and is vulnerable to bacterial infection when used in the treatment of incompletely debrided wounds. Meanwhile, conventional antimicrobial agents primarily consist of chemical compounds that exhibit inadequate biocompatibility and biological hazards. This research endeavors to create an antimicrobial collagen scaffold dressing utilizing the Schiff base reaction through the incorporation of oxidized chitosan diquaternary (ODHTCC) salt into the pADM. Compared with the unmodified pADM, ODHTCC-pADM (OD-pA) still retained the three-stranded helical structure of natural collagen. At an ODHTCC cross-linker concentration of 4%, the thermal denaturation temperature of OD-pA was 85 °C. According to the enzymatic degradation resistance test in vitro, the degradation resistance of OD-pA to type I collagenase was significantly improved compared with that of the uncross-linked pADM. In addition, OD-pA exhibited good antibacterial properties, with inhibition rates of 95.6% and 99.9% for E. coli and Staphylococcus aureus, respectively, and a cytotoxicity level 1, meeting the in vitro requirements of national biomedical materials. In vivo experiments showed that the OD-pA scaffold could better promote wound healing and more effectively promote the positive expression of bFGF, PDGF and VEGF. In conclusion, OD-pA has struck a balance between antibacterial properties, chemical reaction properties and biocompatibility, ultimately achieving controllability, and has broad application prospects in the field of antibacterial biomedical materials.


Assuntos
Derme Acelular , Infecções Bacterianas , Suínos , Animais , Escherichia coli , Cicatrização , Materiais Biocompatíveis/farmacologia , Colágeno , Antibacterianos/farmacologia
4.
Int J Biol Macromol ; 246: 125672, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406920

RESUMO

Tissue engineering is essentially a technique for imitating nature. Natural tissues are made up of three parts: extracellular matrix (ECM), signaling systems, and cells. Therefore, biomimetic ECM scaffold is one of the best candidates for tissue engineering scaffolds. Among the many scaffold materials of biomimetic ECM structure, decellularized ECM scaffolds (dECMs) obtained from natural ECM after acellular treatment stand out because of their inherent natural components and microenvironment. First, an overview of the family of dECMs is provided. The principle, mechanism, advances, and shortfalls of various decellularization technologies, including physical, chemical, and biochemical methods are then critically discussed. Subsequently, a comprehensive review is provided on recent advances in the versatile applications of dECMs including but not limited to decellularized small intestinal submucosa, dermal matrix, amniotic matrix, tendon, vessel, bladder, heart valves. And detailed examples are also drawn from scientific research and practical work. Furthermore, we outline the underlying development directions of dECMs from the perspective that tissue engineering scaffolds play an important role as an important foothold and fulcrum at the intersection of materials and medicine. As scaffolds that have already found diverse applications, dECMs will continue to present both challenges and exciting opportunities for regenerative medicine and tissue engineering.


Assuntos
Biomimética , Engenharia Tecidual , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Matriz Extracelular/química , Medicina Regenerativa/métodos
5.
Biomacromolecules ; 24(5): 2342-2355, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37094104

RESUMO

Ideal tissue-engineered skin scaffolds should possess integrated therapeutic effects and multifunctionality, such as broad-spectrum antibacterial properties, adjustable mechanical properties, and bionic structure. Acellular dermal matrix (ADM) has been broadly used in many surgical applications as an alternative treatment to the "gold standard" tissue transplantation. However, insufficient broad-spectrum antibacterial and mechanical properties for therapeutic efficacy limit the practical clinical applications of ADM. Herein, a balanceable crosslinking approach based on oxidized 2-hydroxypropyltrimethyl ammonium chloride chitosan (OHTCC) was developed for converting ADM into on-demand versatile skin scaffolds for integrated infected wounds therapy. Comprehensive experiments show that different oxidation degrees of OHTCC have significative influences on the specific origins of OHTCC-crosslinked ADM scaffolds (OHTCC-ADM). OHTCC with an oxidation degree of about 13% could prosperously balance the physiochemical properties, antibacterial functionality, and cytocompatibility of the OHTCC-ADM scaffolds. Owing to the natural features and comprehensive crosslinking effects, the proposed OHTCC-ADM scaffolds possessed the desirable multifunctional properties, including adjustable mechanical, degradable characteristics, and thermal stability. In vitro/in vivo biostudies indicated that OHTCC-ADM scaffolds own well-pleasing broad-spectrum antibacterial performances and play effectively therapeutic roles in treating infection, inhibiting inflammation, promoting angiogenesis, and promoting collagen deposition to enhance the infected wound healing. This study proposes a facile balanceable crosslinking approach for the design of ADM-based versatile skin scaffolds for integrated infected wounds therapy.


Assuntos
Derme Acelular , Pele Artificial , Cicatrização , Colágeno , Alicerces Teciduais
6.
Biomacromolecules ; 24(3): 1483-1496, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36802497

RESUMO

The repair of wound damage has been a common problem in clinic for a long time. Inspired by the electroactive nature of tissues and the electrical stimulation of wounds in clinical practice, the next generation of wound therapy with self-powered electrical stimulator is expected to achieve the desired therapeutic effect. In this work, a two-layered self-powered electrical-stimulator-based wound dressing (SEWD) was designed through the on-demand integration of the bionic tree-like piezoelectric nanofiber and the adhesive hydrogel with biomimetic electrical activity. SEWD has good mechanical properties, adhesion properties, self-powered properties, high sensitivity, and biocompatibility. The interface between the two layers was well integrated and relatively independent. Herein, the piezoelectric nanofibers were prepared by P(VDF-TrFE) electrospinning, and the morphology of the nanofibers was controlled by adjusting the electrical conductivity of the electrospinning solution. Benefiting from its bionic dendritic structure, the prepared piezoelectric nanofibers had better mechanical properties and piezoelectric sensitivity than native P(VDF-TrFE) nanofibers, which can convert tiny forces into electrical signals as a power source for tissue repair. At the same time, the designed conductive adhesive hydrogel was inspired by the adhesive properties of natural mussels and the redox electron pairs formed by catechol and metal ions. It has bionic electrical activity matching with the tissue and can conduct the electrical signal generated by the piezoelectric effect to the wound site so as to facilitate the electrical stimulation treatment of tissue repair. In addition, in vitro and in vivo experiments demonstrated that SEWD converts mechanical energy into electricity to stimulate cell proliferation and wound healing. The proposed healing strategy for the effective treatment of skin injury was provided by developing self-powered wound dressing, which is of great significance to the rapid, safe, and effective promotion of wound healing.


Assuntos
Bandagens , Biomimética , Adesivos , Cicatrização , Hidrogéis/química
7.
Biomacromolecules ; 24(1): 426-438, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36574619

RESUMO

Acellular dermal matrix (ADM) can be used as collagen-based biological patches for regeneration and repair of soft tissues in vivo. However, the problems of calcification and infection during treatment with patches can lead to premature patch failure and even to a severely increased risk of recurrence. In this study, first, porcine ADM (pADM) grafted with vinyl underwent an in situ cross-linking reaction in the presence of an initiator, while quaternary ammonium groups were introduced into the pADM during the cross-linking process to obtain MA-DMC-pADM, which is a biological patch with anti-infection and anti-calcification properties. The results of physicochemical property tests of the material showed that the pADM after cross-linking had better physical and mechanical properties. Importantly, antibacterial and anti-calcification experiments showed that MA-DMC-pADM had a good antibacterial and anti-calcification effect. Therefore, the MA-DMC-pADM biological patch facilitates their longer-lasting effectiveness, allowing pADM to be used in a wider range of applications.


Assuntos
Derme Acelular , Colágeno , Suínos , Animais , Antibacterianos/farmacologia
8.
Mater Today Bio ; 16: 100376, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35991626

RESUMO

Collagen-based scaffolds lack mechanical strength, flexibility, and tunable pore structure, affecting tissue repair outcomes and restricting their wide clinical application. Here, two kinds of scaffolds were prepared by a combination of vacuum homogenization, natural air drying, water soaking, lyophilization, and crosslinking. Compared with the scaffolds made of collagen molecules (Col-M), the scaffolds made of collagen aggregates (Col-A) exhibited higher mechanical strength (ultimate tensile strength: 1.38 â€‹± â€‹0.26 â€‹MPa vs 15.46 â€‹± â€‹1.55 â€‹MPa), stronger flexibility, advanced cell adhesion, survival, and proliferation. Subcutaneous implantation in rats showed that Col-A scaffolds promoted cell infiltration, macrophage polarization, and vascularization. Furthermore, the Col-A scaffolds inhibited abdominal bulges due to their adequate mechanical support, and they also promoted vascularized muscle regeneration in a rat abdominal hernia defect model. Our study provides a novel strategy for generating high-strength, flexible, porous collagen-based scaffolds, which can be applied to tissue repair with mechanical strength requirements. It broadens their application range in the field of regenerative medicine.

9.
Int J Biol Macromol ; 216: 741-756, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908679

RESUMO

Collagen is the most abundant protein in animals and one of the most important extracellular matrices that chronically plays an important role in biomaterials. However, the major concern about native collagen is the lack of its thermal stability and weak resistance to proteolytic degradation. Currently, a series of modification technologies have been explored for critical nature and stability enhancement in collagen matrix-based biomaterials, and prosperously large-scale progress has been achieved. The establishment of covalent bonds among collagen noumenon has been verified assuringly to have pregnant influences on its physicochemical properties and biological properties, enlightening to discuss the disparate modification technologies on specific effects on the multihierarchical structures and pivotal performances of collagen. In this review, various existing modification methods were classified from a new perspective, scilicet whether to introduce exogenous substances, to reveal the basic scientific theories of collagen modification. Understanding the role of modification technologies in the enhancement of collagen performance is crucial for developing novel collagen-based biomaterials. Moreover, the different modification effects caused by the interaction sites between the modifier and collagen, and the structure-activity relationship between the structure of the modifier and the properties of collagen were reviewed.


Assuntos
Materiais Biocompatíveis , Colágeno , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colágeno/química , Matriz Extracelular/metabolismo
10.
ACS Biomater Sci Eng ; 8(8): 3411-3423, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35773184

RESUMO

Skin wound healing is a complex process with multiple growth factors and cytokines participating and regulating each other. It is essential to develop novel wound dressings to accelerate the wound healing process. In this study, we developed the heparinized collagen scaffold materials (OL-pA), and the cross-linking reaction was based on the Schiff base reaction between pig acellular dermal matrix (pADM) and dialdehyde low molecular weight heparin (LMWH). Compared with pADM, the OL-pA modified by cross-linking still retained the triple helix structure of native collagen. When the dosage of the OL cross-linking agent was 12 wt %, the cross-linking density of OL-pA was 49.67%, the shrinkage temperature was 75.6 °C, the tensile strength was 14.62 MPa, the elongation at break was 53.14%, and the water contact angle was 25.1°, all of which were significantly improved compared with pADM. The cytocompatibility test showed that L929 cells adhered better on the surface of OL-pA scaffolds, and the proliferation ability of primary fibroblasts was enhanced. In vivo experiments showed that the OL-pA scaffolds could better accelerate wound healing, more effectively promote the positive expression of bFGF, PDGF, and VEGF growth factors, accelerate capillary angiogenesis, and promote wound scarless healing. In summary, the OL-pA scaffolds have more excellent hygrothermal stability, mechanical properties, hydrophilicity, and cytocompatibility. Especially the scaffolds have significant pro-healing properties for the full-thickness skin wound of rats and are expected to be a potential pro-healing collagen-based wound dressing.


Assuntos
Cicatriz , Bases de Schiff , Animais , Bandagens , Colágeno/química , Colágeno/farmacologia , Heparina de Baixo Peso Molecular/farmacologia , Ratos , Bases de Schiff/farmacologia , Suínos , Cicatrização
11.
J Mater Chem B ; 10(21): 4070-4082, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35521678

RESUMO

As a feasible solution to massive blood loss in emergencies, ensuring the availability of absorbable exogenous topical hemostatic materials is a major current focus. Among the available materials, collagen is a surprising presence, but that does not mean that it is an ideal material from every aspect. Collagen fibers (CFs) and collagen have the same composition in terms of matter, but they have differing spatial structures and hierarchies. CFs can be directly seen as a slight advance on collagen, yet disadvantages relating to their mono-functionality and dosage form restrict their further utilization. It is worth noting that technology for extracting Bletilla striata polysaccharide (BSP), a natural derivative of Bletilla striata, is becoming more advanced. Based on extensive surveys and development studies, hydrogels can show extraordinary development flexibility. In particular, when it comes to wound adaptability and stimuli responsiveness, in situ gels show many advantages. Therefore, we introduced a collagen-based biocompatible and efficient thermosensitive hemostatic hydrogel material (COF). COF is a stable, safe, and bioactive material, and multiple characterization tests confirm this. Upon adjusting the ratios of different materials, COF-3, showing the most comprehensive performance, best in vitro hemostatic effects, good gelation speed, and good cell compatibility, was selected. COF-3 was applied during the in vivo hemostasis testing of a rat hemorrhage model, and COF-3 achieved hemostasis within 30 s. COF shows promising application and clinical potential, providing an effective route to the achievement of in vivo minimally invasive hemostasis and laying a solid foundation for the development of functional hemostatic gels.


Assuntos
Hemostáticos , Animais , Colágeno/farmacologia , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Hemostasia , Hemostáticos/química , Hemostáticos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Ratos
12.
RSC Adv ; 12(11): 6811-6820, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35424614

RESUMO

The anticoagulant properties of valve materials are essential to maintain blood patency after artificial valve implantation. Porcine acellular dermal matrix (pADM) has low immunogenicity, good biocompatibility, and can reduce calcification by eliminating heterogeneous cells. However, its main component is collagen, which has strong coagulation function and poor anticoagulant activity. When used in heart valve materials, it can easily coagulate and form a life-threatening thrombus. Therefore, it is necessary to improve its anticoagulant performance. The glutaraldehyde (GA) cross-linked valves widely used clinically are easy to calcify with poor anticoagulant performance and cytotoxicity. In this study, dialdehyde heparin containing cross-linking active aldehyde groups was prepared by sodium periodate oxidation, then it was used for crosslinking with pADM to chemically modify its anticoagulant performance. Compared with GA cross-linked pADM (GA-pA), dialdehyde heparin cross-linked pADM (OL-pA) has better thermal stability and biocompatibility, especially its anticoagulant and antiplatelet adhesion were significantly improved, which can reduce the incidence of coagulation, thrombocytopenia and bleeding. In summary, dialdehyde heparin is expected to be applied to modify the anticoagulant properties of pADM and has great potential for the preparation and clinical application of anticoagulant materials such as heart valves and artificial blood vessels.

13.
Int J Biol Macromol ; 209(Pt B): 1695-1702, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489627

RESUMO

Biological patch is a kind of tissue substitute material derived from natural polymer materials for the repair of human soft tissue defects. The serious calcification of biological patch after implantation is one of the reasons for the decline and failure of patch. In previous studies, we synthesized a new biomaterial crosslinker epoxidized chitosan quaternary ammonium salt (EHTCC) and used it for the crosslinking of porcine acellular dermal matrix (pADM). The prepared EHTCC-pADM had good mechanical properties, biocompatibility and healing promoting properties. In order to broaden its application scenarios, the related properties of EHTCC-pADM as implant patch were further explored in this study. The results of X-ray diffraction (XRD) measurements showed that the structure of pADM did not change much before and after the crosslinking of EHTCC, which was conducive to the maintenance of the excellent biological properties of pADM. According to the enzymatic degradation resistance test in vitro, the resistance of EHTCC-pADM to type I collagenase degradation was significantly improved compared with non -crosslinked pADM. And with the increase of the amount of EHTCC, its degradation resistance was stronger. The experimental results showed that EHTCC-pADM can well support the growth of L929 fibroblasts and has good anti-calcification properties in vitro and in vivo.


Assuntos
Derme Acelular , Calcinose , Derme Acelular/metabolismo , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Calcificação Fisiológica , Calcinose/metabolismo , Colágeno/metabolismo , Polissacarídeos/metabolismo , Suínos
14.
Des Monomers Polym ; 24(1): 293-304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602850

RESUMO

Natural collagen has good biocompatibility and ability to promote tissue regeneration and repair, but the poor mechanical properties and intolerance of degradation of natural collagen limit its applications in the biomedical field. In this research, we synthesized a skin wound repair hydrogel with good biological activity, high strength and excellent water absorption properties. Inspired by the theory of wet healing, dopamine was introduced into the side chain of the water-absorbing polymer polyglutamic acid to synthesize a cross-linking agent (PGAD) with both water absorption and cell adhesion ablities, and then it was introduced into collagen/polyvinyl alcohol (PVA-COL) system to form a double network hydrogel. Scanning electron microscope observation of the morphological characteristics of the hydrogel showed that after the introduction of PGAD, the hydrogel formed an obvious pore structure, and the swelling rate showed that the introduction of PGAD significantly improved the water absorption rate of the hydrogel.In addition, PVA-COL-PGAD hydrogel has good mechanical properties and water absorption behavior.In vitro experimental results revealed that the hydrogel has good biocompatibility. In vivo wound healing experiments showed that hydrogel can promote wound healing process.These results indicated that our hydrogel has great potential as a medical wound dressing.

15.
Int J Biol Macromol ; 182: 1994-2002, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062157

RESUMO

As a biocompatible and bioactive natural tissue engineering collagen scaffold, porcine acellular dermal matrix (pADM) has limitations for the application in tissue regeneration due to its low strength and rapid biodegradation. Herein, to get a good wound dressing, the epoxy group was added to N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) to synthesize the epoxidized N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (EHTCC), and the porcine acellular dermal matrix was modified with EHTCC at different dosage of 0, 4, 8, 12, 16 and 20%. The properties of the EHTCC-pADM were evaluated. The results indicated that the thermal stability and mechanical properties of EHTCC-pADM were remarkably improved, and the natural conformation of the matrix was maintained, which was beneficial to natural and excellent biological properties of the pADM. According to the test results of water contact angle, the hydrophilicity of the material was improved, which is conducive to cell adhesion, proliferation and growth. Cytotoxicity experiments showed that the introduction of EHTCC would not adversely affect the biocompatibility of the materials. In vivo experiments showed that EHTCC-pADM could promote wound healing. In conclusion, EHTCC-pADM is a potential collagen-based dressing for wound healing.


Assuntos
Colágeno/farmacologia , Reagentes de Ligações Cruzadas/química , Compostos de Epóxi/química , Polissacarídeos/farmacologia , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Derme Acelular/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
ACS Omega ; 5(32): 20238-20249, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832777

RESUMO

Infection is a common complication in the process of wound management. An ideal wound dressing is supposed to reduce or even prevent the infection while promoting wound healing. A porcine acellular dermal matrix (pADM) has been already used as a wound dressing in clinic due to its capacity to accelerate wound healing. However, not only is pure pADM not antibacterial, its mechanical properties are poor. In this study, an antibacterial pADM with good performance was prepared by adding two natural products as modifiers, quercetin (QCT) and tea tree oil (TTO). The result of Fourier-transform infrared (FTIR) proved that the addition of modifiers did not break the natural triple-helical structure of collagen. Meanwhile, the results of differential scanning calorimetry (DSC), thermogravimetric analysis (TG), mechanic experiment, and enzymatic degradation demonstrated that pADM handled with QCT and TTO (termed QCT-TTO-pADM) had better thermal stability, mechanical strength, and resistance to enzymatic degradation than pADM. Meanwhile, QCT-TTO-pADM had excellent antibacterial activity and showed an antibacterial rate of over 80%. Furthermore, in the cytocompatibility analysis, QCT-TTO-pADM had no side effects on the adhesion, growth, and proliferation of fibroblasts. QCT-TTO-pADM could even accelerate wound healing more efficiently than pADM and glutaraldehyde-modified pADM (GA-pADM). In conclusion, QCT-TTO-pADM was a potential antibacterial wound dressing with good performance.

17.
ACS Omega ; 4(27): 22292-22301, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31909312

RESUMO

A novel clay-reinforced polycaprolactone/chitosan/curcumin (PCl/CS/Clay/Cur) composite film was fabricated in this study. The prepared Cur-loading composite films were characterized with attenuated total reflection Fourier transformed infrared spectroscopy, scanning electron microscopy, atomic force microscopy, water contact angle, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction, and the results showed good dispersion of clay in the composite films. The addition of nanoclay was found to significantly increase the tensile strength. Also, the clay-enhanced drug-loading films exhibited better controlled-release profiles of Cur than those membranes without clay. Skin disinfection test demonstrated that the curcumin-loaded film could protect wound from bacterial infection. Cytotoxicity analysis proved the good biocompatibility of the composite films. The clay-enhanced Cur-loading films might be promising candidates for wound care.

18.
Int J Biol Macromol ; 124: 699-707, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30502434

RESUMO

A growth of bacterial infections and over-and inefficient release of antibiotics forces one to search new antibacterial agents and/or strategies. In this study, a novel strategy towards biocompatible and antibacterial bilayer wound dressing was proposed by a two-step spin coating method combined with in-situ crosslinking polymerization. First, through in-situ crosslinking polymerization, [2-(methacryloyloxy) ethyl] trimethylammonium chloride ([MTA][Cl]) was polymerized and crosslinked in polycaprolactone (PCL) solution and PCL/PMTA solution was obtained. Then, the PCL/PMTA solution was spinning-coated as the antibacterial top layer and the mixture of PCL and gelatin (Gel) (PCL/Gel) as the biocompatible bottom layer. The obvious bi-layered structure and boundary between the two layers was distinctly showed in scanning electron microscope (SEM) pictures. X-ray diffraction (XRD), attenuated total reflection flourier transformed infrared spectroscopy (ATR-FTIR), differential scanning calorimeter (DSC), thermo-gravimetric analysis (TGA) and water contact angle (WCA) analysis were used to investigate the physical and chemical properties and obtained results demonstrated the successful preparation of the bi-layered membranes. The prepared bi-layered wound dressing displayed both strong antibacterial activity and good biocompatibility in vitro. The bilayered membranes with biocompatible and antibacterial properties would be next generation of wound dressing.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Gelatina/química , Membranas Artificiais , Poliésteres/química , Bactérias/efeitos dos fármacos , Fenômenos Químicos , Teste de Materiais , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
19.
Mater Sci Eng C Mater Biol Appl ; 94: 1020-1036, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423683

RESUMO

Not only are the physicochemical properties and biocompatibility of biomaterials important considerations, but also their antibacterial properties. In this study, a novel chemically-cross-linked antibacterial porcine acellular dermal matrix (pADM) scaffold was fabricated according to a two-step method. A naturally-derived oxidized chitosan oligosaccharide (OCOS) was used to cross-linked pADM (termed OCOS-pADM) to improve its physicochemical properties. Residual aldehyde groups within the OCOS-pADM were used in a redox reaction with Ag ions to produce Ag nanoparticles (AgNPs) in situ. As the AgNPs were tightly adhered onto the scaffold fibrils (termed OCOS-AgNPs-pADM), this effectively functionalized scaffold with antibacterial properties. The generated AgNPs were characterized by UV-Vis diffuse reflectance spectroscopy, XPS and SEM. The results of DSC, TG and enzymatic degradation demonstrated that OCOS-AgNPs-pADM possessed improved thermal stability and resistance to enzymatic degradation compared with pADM scaffolds. The kinetic experiment of the release of silver showed that silver was released in a controllable way. After introducing AgNPs into scaffolds, the OCOS-AgNPs-pADM possessed wide-spectrum antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, MTT assay and CLSM showed that the scaffolds had good biocompatibility. Pieces of OCOS-AgNPs-pADM were implanted into Sprague-Dawley rats to characterize their ability to repair full-thickness skin wounds. And results showed that the OCOS-AgNPs-pADM could accelerate the wound healing process. Overall, this work contributes new insight into the chemical cross-linking and functionalization of pADM scaffolds. In addition, as novel antibacterial scaffolds, OCOS-AgNPs-pADMs have the potential for development as wound dressing materials.


Assuntos
Derme Acelular/metabolismo , Antibacterianos/farmacologia , Quitosana/química , Reagentes de Ligações Cruzadas/química , Nanopartículas Metálicas/química , Oligossacarídeos/química , Prata/química , Cicatrização/efeitos dos fármacos , Animais , Varredura Diferencial de Calorimetria , Proliferação de Células/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Espectroscopia Fotoeletrônica , Ratos Sprague-Dawley , Espectrofotometria Ultravioleta , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Suínos , Termogravimetria
20.
RSC Adv ; 8(73): 42123-42132, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35558764

RESUMO

Natural collagen has good biocompatibility and ability to promote tissue regeneration; however, its low flexibility and easy degradation hinder its applications in wound repair. In this study, we synthesized a skin wound-repairing hydrogel with good bioactivity and high toughness and adhesion. Inspired by the good adhesion of natural mussels, dopamine was grafted onto oxidized sodium alginate to synthesize a new crosslinker (COA), which was introduced into the collagen/polyacrylamide (PAM-Col) double network to synthesize hydrogel. The morphological characterization of the hydrogel using scanning electron microscopy confirmed that the hydrogel formed a more chaotic interconnected structure after the introduction of COA. PAM-Col-COA hydrogel had good mechanical properties, skin tissue adhesion, water absorption, and sustained biological activity. In vivo wound healing experiments showed that hydrogel accelerates the wound healing process and has potential applications in wound dressings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA