Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 33981-33992, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38897966

RESUMO

To meet evolving humidity monitoring needs, the development of flexible, high-performance humidity sensors is crucial. This study introduces an innovative flexible humidity sensor using a single-step laser scribing technique to fabricate a flexible in situ Co3O4 nanoparticle-embedded laser-induced graphene (Co3O4-LIG) composite electrode. Compared to conventional LIG electrodes, the Co3O4-LIG electrode exhibits improved conductivity and hydrophilicity, enhancing charge transfer and water molecule affinity. The unique two-dimensional structure and exceptional water permeability of graphene oxide (GO) combine with the rapid water response and high specific surface area of carboxylated multiwalled carbon nanotubes (MWCNTs), thereby assuming a crucial function in the modification and optimization of the performance of humidity sensors. Through the application of a homogenously blended aqueous solution comprising GO and MWCNTs in precise proportions onto the Co3O4-LIG composite electrode, an excellent humidity-responsive layer is established, culminating in the realization of a cutting-edge GO-MWCNTs@Co3O4-LIG flexible humidity sensor. Noteworthy attributes of this sensor include a heightened sensitivity [959.1% (ΔR/R0)], rapid response and recovery times (within 5 and 26 s, respectively), and a noteworthy linearity (R2 = 0.994) across a relative humidity range of 14 to 95%. The findings presented herein offer valuable insights and a practical blueprint for the design and production of flexible humidity sensors.

2.
Materials (Basel) ; 16(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36902996

RESUMO

Biomolecular materials offer tremendous potential for the development of memristive devices due to their low cost of production, environmental friendliness, and, most notably, biocompatibility. Herein, biocompatible memristive devices based on amyloid-gold nanoparticle hybrids have been investigated. These memristors demonstrate excellent electrical performance, featuring an ultrahigh Roff/Ron ratio (>107), a low switching voltage (<0.8 V), and reliable reproducibility. Additionally, the reversible transition from threshold switching to resistive switching mode was achieved in this work. The arrangement of peptides in amyloid fibrils endows the surface polarity and phenylalanine packing, which provides channels for the migration of Ag ions in the memristors. By modulating voltage pulse signals, the study successfully imitates the synaptic behavior of excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and the transition from short-term plasticity (STP) to long-term plasticity (LTP). More interestingly, Boolean logic standard cells were designed and simulated using the memristive devices. The fundamental and experimental results of this study thus offer insights into the utilization of biomolecular materials for advanced memristive devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...