Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Saudi J Biol Sci ; 28(11): 6230-6238, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34759742

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are a new kind of non-coding RNA(ncRNA). Throughout research, we see an increase in the number of studies demonstrating that circRNAs occupy a pivotal role in the growth and advancement of human tumors. Nevertheless, hsa_circ_001787's role in the evolution of colorectal cancer (CRC) remains unclear. This current study ascertained the expression level of circRNA001787 in CRC specimens and neighboring healthy tissues, and investigated the miRNAs associate with hsa_circ_001787, as well as the relationship between hsa_circ_001787 and pathological factors. METHOD: First, the expression level of hsa_circ_001787 was measured in 43 matched Tissues from CRC and normal tissues through using real-time quantitative reverse transcription PCR (qRT-PCR). Second, based on circular RNA-microRNA and microRNA-mRNA pairs, a circRNA-miRNA-mRNA network was created. The survival rate of mRNAs was investigated through the GEPIA in the network. Regarding the elucidated function analysis of hsa_circ_001787, The biological, molecular, cellular function (GO) and pathway (KEGG) enrichment was obtained. RESULT: We detected that hsa_circ_001787 expression level was significantly down expressed in CRC tissue versus paired CRC histological normal tissue. The area under the curve (AUC) was 0.83. The expression level of hsa_circ_001787 was significantly associated with pathological factors such as tumor grade and the primary site of the tumor. Based on the hsa_circ_001787, a novel circRNA/miRNA/mRNA network has been built up, four miRNAs, and 24 mRNA. The pathway of mRNAs analyzed in the pathogenesis of CRC. Four genes distinguished via the GEPIA database were positively linked to the overall survival of CRC patients. CONCLUSION: Our study suggested that hsa_circ_001787 was significantly down-regulated in CRC. We might be able to use this as a new biomarker in the screening of CRC. Furthermore, our finding achieves a broader understanding of the regulatory mechanisms by which hsa_circ_001787 acts as ceRNA in colorectal cancer.

3.
Acta Pharm Sin B ; 11(5): 1129-1147, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094824

RESUMO

New approaches to cancer immunotherapy have been developed, showing the ability to harness the immune system to treat and eliminate cancer. For many solid tumors, therapy with checkpoint inhibitors has shown promise. For hematologic malignancies, adoptive and engineered cell therapies are being widely developed, using cells such as T lymphocytes, as well as natural killer (NK) cells, dendritic cells, and potentially others. Among these adoptive cell therapies, the most active and advanced therapy involves chimeric antigen receptor (CAR)-T cells, which are T cells in which a chimeric antigen receptor is used to redirect specificity and allow T cell recognition, activation and killing of cancers, such as leukemia and lymphoma. Two autologous CAR-T products have been approved by several health authorities, starting with the U.S. Food and Drug Administration (FDA) in 2017. These products have shown powerful, inducing, long-lasting effects against B cell cancers in many cases. In distinction to the results seen in hematologic malignancies, the field of using CAR-T products against solid tumors is in its infancy. Targeting solid tumors and trafficking CAR-T cells into an immunosuppressive microenvironment are both significant challenges. The goal of this review is to summarize some of the most recent aspects of CAR-T cell design and manufacturing that have led to successes in hematological malignancies, allowing the reader to appreciate the barriers that must be overcome to extend CAR-T therapies to solid tumors successfully.

4.
Drug Des Devel Ther ; 14: 309-329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158188

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is a type of cancer in humans that leads to high mortality and morbidity. CD166 and CD326 are immunoglobulins that are associated with cell migration. These molecules are included in tumorigenesis of CRC and serve a great marker of CRC stem cells. In the present study, we devised a novel chimeric protein including the V1-domain of the CD166 and two epitopes of CD326 to use in diagnostic or therapeutic applications. METHODS: In silico techniques were launched to characterize the properties and structure of the protein. We have predicted physicochemical properties, structures, stability, MHC class I binding properties and ligand-receptor interaction of this chimeric protein by means of computational bioinformatics tools and servers. The sequence of chimeric gene was optimized for expression in prokaryotic host using online tools and cloned into pET-28a plasmid. The recombinant pET28a was transformed into the E. coli BL21DE3. Expression of recombinant protein was examined by SDS-PAGE and Western blotting. RESULTS: The designed chimeric protein retained high stability and the same immunogenicity as of the original proteins. Bioinformatics data indicated that the epitopes of the synthetic chimeric protein might induce B-cell- and T-cell-mediated immune responses. Furthermore, a gene was synthesized using the codon bias of a prokaryotic expression system. This synthetic gene expressed a bacterial expression system. The recombinant protein with molecular weights of 27kDa was expressed and confirmed by anti-his Western blot analysis. CONCLUSION: The designed recombinant protein may be useful as a CRC diagnostic tool and for developing a protective vaccine against CRC.


Assuntos
Antígenos CD/análise , Moléculas de Adesão Celular Neuronais/análise , Neoplasias Colorretais/genética , Simulação por Computador , Molécula de Adesão da Célula Epitelial/análise , Proteínas Fetais/análise , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Antígenos CD/genética , Moléculas de Adesão Celular Neuronais/genética , Clonagem Molecular , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Biologia Computacional , Molécula de Adesão da Célula Epitelial/genética , Proteínas Fetais/genética , Humanos , Engenharia de Proteínas , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética
5.
Genes Dis ; 6(4): 378-384, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832517

RESUMO

Ras gene mutation has been observed in more than 30% of cancers, and 90% of pancreatic, lung and colon cancers. Ras proteins (K-Ras, H-Ras, N-Ras) act as molecular switches which are activated by binding to GTP. They play a role in the cascade of cell process control (proliferation and cell division). In the inactive state, transforming GTP to GDP leads to the activation of GTpase in Ras gene. However, the mutation in Ras leads to the loss of internal GTPase activity and permanent activation of the protein. The activated Ras can promote the cell death or stop cell growth, which are facilitated by Ras-association domain family. Various studies have been conducted to determine the importance of losing RASSF proteins in Ras-induced tumors. This paper examines the role of Ras and RASSF proteins. In general, RASSF proteins can be used as a suitable means for targeting a large group of Ras-induced tumors.

6.
Int J Nanomedicine ; 14: 3111-3128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118626

RESUMO

Cancer is one of the most complex diseases that has resulted in multiple genetic disorders and cellular abnormalities. Globally, cancer is the most common health concern disease that is affecting human beings. Great efforts have been made over the past decades in biology with the aim of searching novel and more efficient tools in therapy. Thus, small interfering RNAs (siRNAs) have been considered one of the most noteworthy developments which are able to regulate gene expression following a process known as RNA interference (RNAi). RNAi is a post-transcriptional mechanism that involves the inhibition of gene expression through promoting cleavage on a specific area of a target messenger RNA (mRNA). This technology has shown promising therapeutic results for a good number of diseases, especially in cancer. However, siRNA therapeutics have to face important drawbacks in therapy including stability and successful siRNA delivery in vivo. In this regard, the development of effective siRNA delivery systems has helped addressing these issues by opening novel therapeutic windows which have allowed to build up important advances in Nanomedicine. In this review, we discuss the progress of siRNA therapy as well as its medical application via nanoparticle-mediated delivery for cancer treatment.


Assuntos
Nanopartículas/química , Neoplasias/terapia , RNA Interferente Pequeno/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Técnicas de Transferência de Genes , Humanos , Nanopartículas/administração & dosagem , Neoplasias/genética , Interferência de RNA
7.
EXCLI J ; 18: 1-7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30956633

RESUMO

Toxoplasmosis is considered as one of the most prevalent human parasitic infections that can be transmitted from mother to the fetus. The onset of toxoplasmosis during pregnancy has clinical complications including spontaneous abortion, preterm labor, stillbirth and fetal abnormalities. The aim of this study was to investigate the prevalence of Toxoplasmosis infection in pregnant women and their infants in Lorestan province, Western Iran. Blood and sera samples were collected from 98 pregnant women and their infants. All collected samples were examined for Toxoplasma gondii infection by serological tests (ELISA IgM & IgG) and PCR assay. Among the 98 samples of mother and umbilical cord prevalence of anti-Toxoplasma IgG, was 34/98 (34.69 %) and 33/98 (33.67 %), respectively. All pregnant women were negative for, anti-Toxoplasma IgM while it was found in 5/98 (5.1 %) of umbilical cords. Based on PCR analysis, Toxoplasma infection was detected in 5 (5.1 %) and 7 (7.14 %) of mother and umbilical cords, respectively. Molecular test along with evaluation of IgM (P <0.001) and IgG (P = 0.001) were significantly correlated.

8.
Pract Lab Med ; 13: e00113, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30705933

RESUMO

Cancer is the second leading cause of death globally. piRNAs, which are a novel type of identified small noncoding RNA (ncRNA), play a crucial role in cancer genomics. In recent years, a relatively large number of studies have demonstrated that several piRNA are aberrantly expressed in various kinds of cancers including gastric cancer, bladder cancer, breast cancer, colorectal cancer and Lung cancer and may probably serve as a novel therapeutic target and biomarker for cancer treatment. The present review summarized current advances in our knowledge of the roles of piRNAs in cancer.

9.
Pak J Biol Sci ; 21(3): 135-150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30187723

RESUMO

Cancer is a major burden of disease worldwide with considerable impact on society. The tide of immunotherapy has finally changed after decades of disappointing results and has become a clinically validated treatment for many cancers. Immunotherapy takes many forms in cancer treatment, including the adoptive transfer of ex vivo activated T cells, oncolytic viruses, natural killer cells, cancer vaccines and administration of antibodies or recombinant proteins that either costimulate cells or block the so-called immune checkpoint pathways. Recently, cancer immunotherapy has received a high degree of attention, which mainly contains the treatments for programmed death ligand 1 (PD-L1), programmed death 1 (PD-1), chimeric antigen receptors (CARs) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). Here, this paper reviewed the current understandings of the main strategies in cancer immunotherapy (adoptive cellular immunotherapy, immune checkpoint blockade, oncolytic viruses and cancer vaccines) and discuss the progress in the synergistic design of immune-targeting combination therapies.


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Terapia Combinada/métodos , Humanos , Fatores Imunológicos/imunologia
10.
Int J Biomed Sci ; 13(2): 48-57, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28824341

RESUMO

One of the most important advances in biology has been the discovery that siRNA (small interfering RNA) is able to regulate the expression of genes, by a phenomenon known as RNAi (RNA interference). The discovery of RNAi, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. siRNA has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. siRNAs can be used as tools to study single gene function both in vivo and in-vitro and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. The siRNA delivery systems are categorized as non-viral and viral delivery systems. The non-viral delivery system includes polymers; Lipids; peptides etc. are the widely studied delivery systems for siRNA. Effective pharmacological use of siRNA requires 'carriers' that can deliver the siRNA to its intended site of action. The carriers assemble the siRNA into supramolecular complexes that display functional properties during the delivery process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...