Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(11): 366, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365465

RESUMO

CONTEXT: Photodetectors utilizing donor/acceptor (D/A) molecules have the capacity to detect light through molecular interactions between a donor and an acceptor molecule. These devices leverage electronic or optical changes within molecules when exposed to light, resulting in observable modifications. The unique properties of photodetectors with D/A molecules make them valuable tools in various fields, including molecular electronics. This paper presents the modeling and simulation of a single-molecule photodetector based on a D/A molecule configuration. The acceptor molecule used is N-doped C60 fullerene, while the donor molecule is B-doped C60 fullerene. Initially, simulations were conducted at zero bias voltage to determine the energy and states of the bipartite molecule. Subsequently, the system's Hamiltonian was computed based on these results. The self-consistent field method (SCF) and optical self-energy coefficients were employed for modeling. Finally, the current-voltage curve of the device was derived for various input light frequencies. The simulation and modeling results demonstrated that the device exhibited negative differential resistances at bias voltages of 0.33 V, 1.58 V, and - 0.93 V, depending on the input light frequency. Furthermore, the designed device demonstrated the ability to detect and absorb waves with different frequencies. The number of current peaks in the current-voltage curve varied with by altering the number of optical modes. METHODS: The computational work was conducted using the software package of Atomistix ToolKit (ATK-2018.06) and MATLAB code. The calculations were based on the density functional theory (DFT) approach and the self-consistent field method, specifically the non-equilibrium Green function (NEGF). The exchange correlation function was investigated using the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof (PBE). For the calculations, we employed the double-ζ plus polarization (DZP) basis set. Initially, the structures of N doped-C60-σ-B-doped-C60 molecule underwent optimization using the DFT approach implemented in the ATK package. This optimization process allowed us to extract the parameters of the molecule. Subsequently, we utilized the NEGF formalism in MATLAB software to model and simulate photodetector based on the optimized molecule. We calculated important features of the photodetector, such as photocurrent, and compared the performance of the photodetector using photons with energies of 2 and 3 eV.

2.
Sci Rep ; 14(1): 21217, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261514

RESUMO

This paper presents a tunable, single-mode narrowband optical filter designed for terahertz applications utilizing graphene nanoribbons. To attain optimal conditions, the filter was devised in three steps. It is composed of two input and output waveguides and a T-shaped resonator with nanoscale dimensions. The transmission spectrum analysis employs the three-dimensional finite difference time domain and coupled mode theory methods. Tunability is achieved through the adjustment of the nanoribbon size and the chemical potential of graphene. The filter demonstrates remarkable performance metrics, including a maximum transmission spectrum efficiency of 99%, a full width at half maximum (FWHM) of 0.115 THz, a quality factor (Q-factor) of 100, and a free spectral range (FSR) of 45 THz. The presented structure holds significant promise for integrated optical components and compact optical devices, showcasing its applicability in the terahertz frequency range. Furthermore, the inherent sensitivity of this structure to changes in the refractive index of the substrate positions it as a potential sensor.

3.
J Mol Model ; 29(11): 332, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37806972

RESUMO

CONTEXT: In this paper, we simulate a single-molecule diode to calculate the effective coupling and investigate the conductivity, as well as the effect of the electric field on these two parameters. First, we obtain the molecule states and energies at 0 V. The next step is to calculate the electrode/molecule coupling using the obtained electrode and molecule Hamiltonian. The electrode/molecule coupling depends on distance. By increasing the distance from 5 to 5.5 angstroms, the coupling decreases from 0.004 to 0.0002 eV. After calculating the electrode/molecule coupling, which is the most significant parameter in electron transfer, the results can be used to obtain the current-voltage and conductivity curves of the device. Simulation results demonstrate that externally applied electric field to the benzene molecule (isolated molecule) can cause a reduction in the effective coupling between the Au electrode and benzene, leading to decreased current and conductivity. Additionally, the applied electric field narrows the gap between the HOMO and LUMO energy levels. METHODS: We conducted this computational work using Gaussian 09 software and a MATLAB code, both of which are based on the density functional theory (DFT) approach and the self-consistent field (SCF) method. For DFT calculations, we employed the three-parameter Beck hybrid exchange functional (B3), hybridized with the nonlocal correlation functional developed by Lee, Yang, and Parr (LYP). All optimizations were performed with triple-zeta polarized (TZP) split-valence 6-311G basis sets. The final step involved calculating the electrode/molecule coupling using the Huckel method and integrating the site-to-state transformation with Huckel parameters and the Fermi golden rule. After this calculation, we obtained the current-voltage and conductivity curves using MATLAB software.

4.
Sci Rep ; 13(1): 13976, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633979

RESUMO

In this paper, a novel 8-shaped resonator coupled to metal-insulator-metal waveguides is used for designing plasmonic filters and sensors. The resonator supports two resonance modes, which result in peaks in the transmission spectrum of the structure. A Q-factor of 247.4 which can reach up to 270 at the wavelength of 1187.5 nm is observed. By placing vertical and horizontal metal blades in the resonator, two tunable single-mode plasmonic filters are obtained at the first and second resonance modes, respectively. The effect of structural parameters on the transmission spectrum is investigated using the finite-difference time-domain (FDTD) method. Based on the obtained results, the proposed plasmonic structure can be used for biosensing applications such as the detection of basal cancer cells with a sensitivity of 1200 nm/RIU. It is of great significance that both the sensitivity and Q-factor values for the proposed structure are higher than most recent sensors reported in the literature. Therefore, the proposed structure is a potentially promising candidate for filtering and sensing applications.


Assuntos
Neoplasia de Células Basais , Humanos , Vibração
5.
Sci Rep ; 12(1): 21292, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494440

RESUMO

In this paper, an optical refractive index (RI) sensor based on a hybrid plasmonic-photonic crystal (P-PhC) is designed. In the sensor's structure, some metallic rods are embedded in a rod-type photonic crystal (PhC) structure. Numerical simulations are performed based on the finite-difference time-domain (FDTD) method. The obtained results illustrate that the localized surface plasmons (LSP) induced by metallic rods can be excited in a PhC lattice to generate a hybrid P-PhC mode. According to the results, the hybrid mode provides unique opportunities. Using metallic rods in the coupling regions between waveguides and the resonant cavity significantly increases the interaction of the optical field and analyte inside the cavity. The simulation results reveal that high sensitivity of 1672 nm/RIU and an excellent figure of merit (FoM) of 2388 RIU-1 are obtained for the proposed hybrid P-PhC sensor. These values are highest compared to the purely plasmonic and or purely PhC sensors reported in the literature. The proposed sensor could simultaneously enhance sensitivity and FoM values. Therefore, the proposed hybrid P-PhC RI sensor is a more fascinating candidate for high-sensitivity and high-resolution sensing applications at optic communication wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA