Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 147(1): 013929, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688435

RESUMO

The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.

2.
J Chem Phys ; 139(10): 104313, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-24050350

RESUMO

We report on the selective ionization of oriented nitrous oxide (N2O) molecules in gas phase by the use of an intense asymmetric two-color ω/2ω 40 fs laser field. By means of a time-of-flight mass spectrometer the induced N2O mass spectra have been recorded as a function of the relative phase of the two-color laser fields. It is found that the applied method facilitates the distinction of different dissociation channels that result in fragments with the same mass and kinetic energy. Thus, the potential of the employed technique for phase control of the molecular excitation for the case of N2O is explored.

3.
J Phys Chem A ; 115(17): 4186-94, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21462946

RESUMO

We report on the interaction of alkyl-halide clusters with 35 ps and 20 fs laser pulses at λ = 266, 532, and 1064 nm and 400 and 800 nm, respectively. Particularly, we examine by means of time-of-flight mass spectrometry the intracluster photochemical processes, which give rise to the formation of molecular halogen ions. The efficiency of molecular halogen ion formation is found to depend strongly on the laser wavelength and pulse duration. The ionization/excitation schemes involve in both cases the multiphoton absorption by the clusters and the combined action of the laser and the intracluster electric field. Intracluster energy transfer processes seem to have a significant contribution to the molecular halogen ion formation in the ps domain, while in the fs region, this is probably facilitated by a rescattering process and/or by photon absorption. A physical mechanism for the interpretation of our experimental results is proposed.


Assuntos
Hidrocarbonetos Halogenados/química , Lasers , Íons/química , Espectrometria de Massas , Processos Fotoquímicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...