Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(13): 3718-3732, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000121

RESUMO

Understanding how microbial communities are shaped across spatial dimensions is of fundamental importance in microbial ecology. However, most studies on soil biogeography have focused on the topsoil microbiome, while the factors driving the subsoil microbiome distribution are largely unknown. Here we used 16S rRNA amplicon sequencing to analyse the factors underlying the bacterial ß-diversity along vertical (0-240 cm of soil depth) and horizontal spatial dimensions (~500,000 km2 ) in the U.S. Corn Belt. With these data we tested whether the horizontal or vertical spatial variation had stronger impacts on the taxonomic (Bray-Curtis) and phylogenetic (weighted Unifrac) ß-diversity. Additionally, we assessed whether the distance-decay (horizontal dimension) was greater in the topsoil (0-30 cm) or subsoil (in each 30 cm layer from 30-240 cm) using Mantel tests. The influence of geographic distance versus edaphic variables on the bacterial communities from the different soil layers was also compared. Results indicated that the phylogenetic ß-diversity was impacted more by soil depth, while the taxonomic ß-diversity changed more between geographic locations. The distance-decay was lower in the topsoil than in all subsoil layers analysed. Moreover, some subsoil layers were influenced more by geographic distance than any edaphic variable, including pH. Although different factors affected the topsoil and subsoil biogeography, niche-based models explained the community assembly of all soil layers. This comprehensive study contributed to elucidating important aspects of soil bacterial biogeography including the major impact of soil depth on the phylogenetic ß-diversity, and the greater influence of geographic distance on subsoil than on topsoil bacterial communities in agroecosystems.


Assuntos
Solo , Zea mays , Zea mays/genética , Microbiologia do Solo , RNA Ribossômico 16S/genética , Filogenia
2.
J Environ Qual ; 51(4): 708-718, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35426153

RESUMO

In the U.S. Corn Belt, annual croplands are the primary source of nitrate loading to waterways. Long periods of fallow cause most nitrate loss, but there is extreme interannual variability in the magnitude of nitrate loss due to weather. Using mean annual (2001-2018) flow-weighted nitrate-N concentration (FWNC; mg NO3 - -N L-1 ), load (kg NO3 - -N), and yield (kg NO3 - -N ha-1 cropland) for 29 watersheds, our objectives were (a) to quantify the magnitude and interannual variability of 5-yr moving average FWNC, load, and yield; (2) to estimate the probability of measuring 41% reductions in nitrate loss after isolating the effect of weather on nitrate loss by quantifying the interannual variability of nitrate loss in watersheds where there was no trend in 5-yr moving average nitrate loss (Iowa targets a 41% nitrate loss reduction from croplands); and (c) to identify factors that, in the absence of long-term trends in nitrate loss, best explain the interannual variability in nitrate loss. Averaged across all watersheds, the mean probability of measuring a statistically significant 41% reduction in FWNC across 15 yr, should it occur, was 96%. However, the probabilities of measuring 41% reductions in nitrate load and yield were only 44 and 32%. Across watersheds, soil organic matter, tile drainage, interannual variability of precipitation, and watershed area accounted for interannual variability in these nitrate loss indices. Our results have important implications for setting realistic timelines to measure nitrate loss reductions against the background of interannual weather variation and can help to target monitoring intensity across diverse watersheds.


Assuntos
Agricultura , Nitratos , Iowa , Nitratos/análise , Solo , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...