Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451937

RESUMO

Atlantic tarpon (Megalops atlanticus) are capable of long-distance migrations (hundreds of kilometers) but also exhibit resident behaviors in estuarine and coastal habitats. The aim of this study was to characterize the spatial distribution of juvenile tarpon and identify migration pathways of adult tarpon in the northern Gulf of Mexico. Spatial distribution of juvenile tarpon was investigated using gillnet data collected by Texas Parks and Wildlife Department (TPWD) over the past four decades. Generalized additive models (GAMs) indicated that salinity and water temperature played a significant role in tarpon presence, with tarpon occurrences peaking in the fall and increasing over the past four decades in this region. Adult tarpon caught off Texas (n = 40) and Louisiana (n = 4) were tagged with acoustic transmitters to characterize spatial and temporal trends in their movements and migrations. Of the 44 acoustic transmitters deployed, 18 of the individuals were detected (n = 16 west of the Mississippi River Delta and n = 2 east of the Mississippi River Delta). Tarpon tagged west of the Mississippi River Delta off Texas migrated south in the fall and winter into areas of south Texas and potentially into Mexico, while individuals tagged east of the delta migrated into Florida during the same time period, suggesting the presence of two unique migratory contingents or subpopulations in this region. An improved understanding of the habitat requirements and migratory patterns of tarpon inhabiting the Gulf of Mexico is critically needed by resource managers to assess the vulnerability of each contingent to fishing pressure, and this information will guide multi-state and multi-national conservation efforts to rebuild and sustain tarpon populations.


Assuntos
Ecossistema , Peixes , Humanos , Animais , Golfo do México , Animais Selvagens , Movimento
2.
Sci Rep ; 13(1): 16277, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770551

RESUMO

Natural geochemical markers in the otolith of yellowfin tuna (Thunnus albacares) were used to establish nursery-specific signatures for investigating the origin of fish captured in the western Atlantic Ocean (WAO). Two classes of chemical markers (trace elements, stable isotopes) were used to first establish nursery-specific signatures of age-0 yellowfin tuna from four primary production zones in the Atlantic Ocean: Gulf of Mexico, Caribbean Sea, Cape Verde, and Gulf of Guinea. Next, mixture and individual assignment methods were applied to predict the origin of sub-adult and adult yellowfin tuna from two regions in the WAO (Gulf of Mexico, Mid Atlantic Bight) by relating otolith core signatures (corresponding to age-0 period) to baseline signatures of age-0 fish from each nursery. Significant numbers of migrants from Caribbean Sea and eastern Atlantic Ocean (EAO) production zones (Gulf of Guinea, Cape Verde) were detected in the WAO, suggesting that fisheries in this region were subsidized by outside spawning/nursery areas. Contributions from local production (Gulf of Mexico) were also evident in samples from both WAO fisheries, but highly variable from year to year. High levels of mixing by yellowfin tuna from the different production zones and pronounced interannual trends in nursery-specific contribution rates in the WAO emphasize the complex and dynamic nature of this species' stock structure and population connectivity. Given that geographic shifts in distribution across national or political boundaries leads to governance and management challenges, this study highlights the need for temporally resolved estimates of nursery origin to refine assessment models and promote the sustainable harvest of this species.


Assuntos
Migrantes , Atum , Animais , Humanos , Oceano Atlântico , Região do Caribe , Golfo do México
3.
Sci Rep ; 11(1): 14216, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244525

RESUMO

Geochemical chronologies were constructed from otoliths of adult Pacific bluefin tuna (PBT) to investigate the timing of age-specific egress of juveniles from coastal nurseries in the East China Sea or Sea of Japan to offshore waters of the Pacific Ocean. Element:Ca chronologies were developed for otolith Li, Mg, Mn, Zn, Sr, and Ba, and our assessment focused on the section of the otolith corresponding to the age-0 to age-1 + interval. Next, we applied a common time-series approach to geochemical profiles to identify divergences presumably linked to inshore-offshore migrations. Conspicuous geochemical shifts were detected during the juvenile interval for Mg:Ca, Mn:Ca, and Sr:Ca that were indicative of coastal-offshore transitions or egress generally occurring for individuals approximately 4-6 mo. old, with later departures (6 mo. or older) linked to overwintering being more limited. Changepoints in otolith Ba:Ca profiles were most common in the early age-1 period (ca. 12-16 mo.) and appear associated with entry into upwelling areas such as the California Current Large Marine Ecosystem following trans-Pacific migrations. Natal origin of PBT was also predicted using the early life portion of geochemical profile in relation to a baseline sample comprised of age-0 PBT from the two primary spawning areas in the East China Sea and Sea of Japan. Mixed-stock analysis indicated that the majority (66%) of adult PBT in our sample originated from the East China Sea, but individuals of Sea of Japan origin were also detected in the Ryukyu Archipelago.

4.
Glob Chang Biol ; 27(11): 2520-2536, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738904

RESUMO

Southern flounder (Paralichthys lethostigma) are a coastal flatfish species that supports recreational and commercial fisheries but are currently experiencing range-wide declines. To quantify the range-wide declines and investigate the role of climate in these declines, fishery-independent sampling data of age-0 flounder were obtained from 34 estuaries representing four states in the Gulf of Mexico (TX, LA, AL, and FL) and three states in the Southeastern United States Atlantic Ocean (FL, SC, and NC) spanning from 1976 to 2019. Generalized additive models (GAM) were used to estimate age-0 recruitment trends. Spatial and temporal synchrony analyses were then conducted using annual GAM-predicted values to determine if trends were similar between estuaries in close proximity, and if declines occurred at the same time. Because the species is dependent on physical transport (i.e., winds and tides) for recruitment, hourly wind speed, wind direction, water temperature, and air temperature were obtained for estuaries with non-zero sampling totals and long-term data sets. Only six estuaries showed significant relationships between age-0 flounder indices and growing degree days. However, all estuaries with wind data showed significant relationships between age-0 flounder indices and hourly summed wind speed. Southern flounder also have environmental sex determination, meaning warming estuaries could also account for population changes and declines. We document that water temperatures in the same space and time where southern flounder sexually determine are warmer now than even a decade ago, which could masculinize populations and substantially change population demographics. These results illustrate the vulnerability of estuarine finfish populations to climate change and increased climate variability. Understanding how climate acts on southern flounder biology may help managers respond to and prevent fishery collapses.


Assuntos
Estuários , Peixes , Animais , Oceano Atlântico , Mudança Climática , Golfo do México , Sudeste dos Estados Unidos
5.
PLoS One ; 14(3): e0213506, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870449

RESUMO

Habitat shifts that occur during the life cycles of marine fishes influence population connectivity and structure. A generalized additive modeling approach was used to characterize relationships between environmental variables and the relative abundance of red snapper Lutjanus campechanus over unconsolidated substrate on the continental shelf (<150 m) of the U.S. Gulf of Mexico (GoM) at three different life stages: juvenile (age-0, <125 mm FL), sub-adult (age-1-2, 125-300 mm FL), and adult (age-2+, >300 mm FL). Fisheries independent data (2008-2014) were used to develop separate models for both the eastern and western GoM, and final models were used to predict the relative availability of suitable habitat for each life stage across the two regions. Predictor variables included in final models varied by age class and region, with depth, dissolved oxygen, longitude, and distance to artificial structure common to most models. Depth was among the most influential variables in all models, and preferred depth increased with increasing size/age. Regional differences in fish-habitat relationships were also observed, as relative abundance of larger red snapper over unconsolidated substrates was more closely linked to artificial structure in the eastern GoM. The location of predicted high quality habitat for juvenile red snapper was greatest on the inner Texas shelf and a smaller area east of the Mississippi River Delta, suggesting these two areas may represent important nursery grounds for the respective regions. Clear ontogenetic shifts in the spatial distribution of predicted high quality habitat were evident in both the eastern (expansion from west to east with age) and western (shift from inshore to offshore) GoM. Given the unique population dynamics between the eastern and western GoM, improving our understanding of spatial and temporal variability in habitat quality may be important to maintaining connectivity between juvenile and adult habitats, and may enhance recovery and management of red snapper stocks in the GoM.


Assuntos
Perciformes/fisiologia , Animais , Ecossistema , Golfo do México , Dinâmica Populacional
6.
Sci Rep ; 9(1): 1663, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733508

RESUMO

The timing and extent of international crossings by billfishes, tunas, and sharks in the Cuba-Mexico-United States (U.S.) triangle was investigated using electronic tagging data from eight species that resulted in >22,000 tracking days. Transnational movements of these highly mobile marine predators were pronounced with varying levels of bi- or tri-national population connectivity displayed by each species. Billfishes and tunas moved throughout the Gulf of Mexico and all species investigated (blue marlin, white marlin, Atlantic bluefin tuna, yellowfin tuna) frequently crossed international boundaries and entered the territorial waters of Cuba and/or Mexico. Certain sharks (tiger shark, scalloped hammerhead) displayed prolonged periods of residency in U.S. waters with more limited displacements, while whale sharks and to a lesser degree shortfin mako moved through multiple jurisdictions. The spatial extent of associated movements was generally associated with their differential use of coastal and open ocean pelagic ecosystems. Species with the majority of daily positions in oceanic waters off the continental shelf showed the greatest tendency for transnational movements and typically traveled farther from initial tagging locations. Several species converged on a common seasonal movement pattern between territorial waters of the U.S. (summer) and Mexico (winter).


Assuntos
Migração Animal/fisiologia , Ecossistema , Perciformes/fisiologia , Dinâmica Populacional , Tubarões/fisiologia , Atum/fisiologia , Animais , Cuba , México , Oceanos e Mares , Estados Unidos
7.
PLoS One ; 13(10): e0203873, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278043

RESUMO

The feeding ecology of two reef fishes associated with artificial reefs in the northwest Gulf of Mexico (GoM) was examined using gut contents and natural stable isotopes. Reefs were divided into three regions (east, central, west) across an east to west gradient of increasing reef complexity and salinity. Gray triggerfish (Balistes capriscus) primarily consumed reef-associated prey (xanthid crabs, bivalves, barnacles) and pelagic gastropods, while red snapper (Lutjanus campechanus) diets were mainly comprised of non-reef prey (stomatopods, fishes, portunid crabs). Natural stable isotopes of carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) were measured in consumer muscle tissue as well as potential primary producers. Gray triggerfish occupied a lower trophic position than red snapper, with lower δ13C and δ15N values across all size classes and regions, and generally higher δ34S values. Red snapper had a smaller range of stable isotope values and corrected standard ellipse areas across all size classes and regions, indicating a smaller isotopic niche. Contribution estimates of particulate organic matter (26 to 54%) and benthic microalgae (BMA, 47 to 74%) for both species were similar, with BMA contributions greater across all three size classes (juveniles, sub-adults, adults) of red snapper and all but the juvenile size class for gray triggerfish. Species gut contents and stable isotopes differed by region, with fishes consuming more crabs in the east region and more gastropods in the central and west regions. δ13C and δ15N values generally decreased from east to west, while δ34S increased across this gradient. Results highlight species-specific feeding differences associated with artificial reefs, where gray triggerfish may be more dependent on the reef structure for foraging opportunities. In addition, results offer further information on the integral role of BMA in primary production at nearshore artificial reefs.


Assuntos
Ração Animal/análise , Isótopos de Carbono/análise , Peixes/fisiologia , Isótopos de Nitrogênio/análise , Isótopos de Enxofre/análise , Animais , Ecossistema , Peixes/classificação , Cadeia Alimentar , Golfo do México , Marcação por Isótopo , Comportamento Predatório , Especificidade da Espécie
8.
PLoS One ; 8(10): e76080, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130759

RESUMO

Time-series data collected over a four-year period were used to characterize patterns of abundance for pelagic fishes in the northern Gulf of Mexico (GoM) before (2007-2009) and after (2010) the Deepwater Horizon oil spill. Four numerically dominant pelagic species (blackfin tuna, blue marlin, dolphinfish, and sailfish) were included in our assessment, and larval density of each species was lower in 2010 than any of the three years prior to the oil spill, although larval abundance in 2010 was often statistically similar to other years surveyed. To assess potential overlap between suitable habitat of pelagic fish larvae and surface oil, generalized additive models (GAMs) were developed to evaluate the influence of ocean conditions on the abundance of larvae from 2007-2009. Explanatory variables from GAMs were then linked to environmental data from 2010 to predict the probability of occurrence for each species. The spatial extent of surface oil overlapped with early life habitat of each species, possibly indicating that the availability of high quality habitat was affected by the DH oil spill. Shifts in the distribution of spawning adults is another factor known to influence the abundance of larvae, and the spatial occurrence of a model pelagic predator (blue marlin) was characterized over the same four-year period using electronic tags. The spatial extent of oil coincided with areas used by adult blue marlin from 2007-2009, and the occurrence of blue marlin in areas impacted by the DH oil spill was lower in 2010 relative to pre-spill years.


Assuntos
Ecossistema , Peixes , Animais , Golfo do México , Poluição por Petróleo/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...