Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927469

RESUMO

Osteoarthritis (OA) is a progressive chronic disease affecting the articular joints, leading to pain and disability. Unlike traditional views that primarily link OA to aging, recent understanding portrays it as a multifactorial degenerative disease of the entire joint. Emerging research highlights metabolic and immune dysregulation in OA pathogenesis, emphasizing the roles of obesity, dyslipidemia, and insulin resistance in altering joint homeostasis. Recent studies have increasingly focused on the complex role of white adipose tissue (WAT) in OA. WAT not only serves metabolic functions but also plays a critical role in systemic inflammation through the release of various adipokines. These adipokines, including leptin and adiponectin, have been implicated in exacerbating cartilage erosion and promoting inflammatory pathways within joint tissues. The overlapping global crises of obesity and metabolic syndrome have significantly impacted joint health. Obesity, now understood to contribute to mechanical joint overload and metabolic dysregulation, heightens the risk of developing OA, particularly in the knee. Metabolic syndrome compounds these risks by inducing chronic inflammation and altering macrophage activity within the joints. The multifaceted effects of obesity and metabolic syndrome extend beyond simple joint loading. These conditions disrupt normal joint function by modifying tissue composition, promoting inflammatory macrophage polarization, and impairing chondrocyte metabolism. These changes contribute to OA progression, highlighting the need for targeted therapeutic strategies that address both the mechanical and biochemical aspects of the disease. Recent advances in understanding the molecular pathways involved in OA suggest potential therapeutic targets. Interventions that modulate macrophage polarization, improve chondrocyte function, or normalize adipokine levels could serve as preventative or disease-modifying therapies. Exploring the role of diet, exercise, and pharmacological interventions in modulating these pathways offers promising avenues for reducing the burden of OA. Furthermore, such methods could prove cost-effective, avoiding the increase in access to healthcare.

2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569290

RESUMO

(1) Osteoarthritis (OA) is a progressive joint degenerative disease that currently has no cure. Limitations in the development of innovative disease modifying therapies are related to the complexity of the underlying pathogenic mechanisms. In addition, there is the unmet need for efficient drug delivery methods. Magnetic nanoparticles (MNPs) have been proposed as an efficient modality for the delivery of bioactive molecules within OA joints, limiting the side effects associated with systemic delivery. We previously demonstrated MNP's role in increasing cell proliferation and chondrogenesis. In the design of intra-articular therapies for OA, the combined NE-MNP delivery system could provide increased stability and biological effect. (2) Proprietary Fe3O4 MNPs formulated as oil-in-water (O/W) magneto nanoemulsions (MNEs) containing ascorbic acid and dexamethasone were tested for size, stability, magnetic properties, and in vitro biocompatibility with human primary adipose mesenchymal cells (ADSC), cell mobility, and chondrogenesis. In vivo biocompatibility was tested after systemic administration in mice. (3) We report high MNE colloidal stability, magnetic properties, and excellent in vitro and in vivo biocompatibility. By increasing ADSC migration potential and chondrogenesis, MNE carrying dexamethasone and ascorbic acid could reduce OA symptoms while protecting the cartilage layer.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Cartilagem , Osteoartrite/patologia , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Fenômenos Magnéticos , Condrogênese , Cartilagem Articular/patologia
3.
ACS Omega ; 8(26): 23953-23963, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426224

RESUMO

Magnetic nanoparticles (MNPs) are intensely scrutinized for applications in emerging biomedical fields. Their potential use for drug delivery, tracking, and targeting agents or for cell handling is tested for regenerative medicine and tissue engineering applications. The large majority of MNPs tested for biomedical use are coated with different lipids and natural or synthetic polymers in order to decrease their degradation process and to increase the ability to transport drugs or bioactive molecules. Our previous studies highlighted the fact that the as-prepared MNP-loaded cells can display increased resistance to culture-induced senescence as well as ability to target pathological tissues; however, this effect tends to be dependent on the cell type. Here, we assessed comparatively the effect of two types of commonly used lipid coatings, oleic acid (OA) and palmitic acid (PA), on normal human dermal fibroblasts and adipose-derived mesenchymal cells with culture-induced senescence and cell motility in vitro. OA and PA coatings improved MNPs stability and dispersibility. We found good viability for cells loaded with all types of MNPs; however, a significant increase was obtained with the as-prepared MNPs and OA-MNPs. The coating decreases iron uptake in both cell types. Fibroblasts (Fb) integrate MNPs at a slower rate compared to adipose-derived mesenchymal stem cells (ADSCs). The as-prepared MNPs induced a significant decrease in beta-galactosidase (B-Gal) activity with a nonsignificant one observed for OA-MNPs and PA-MNPs in ADSCs and Fb. The as-prepared MNPs significantly decrease senescence-associated B-Gal enzymatic activity in ADSCs but not in Fb. Remarkably, a significant increase in cell mobility could be detected in ADSCs loaded with OA-MNPscompared to controls. The OA-MNPs uptake significantly increases ADSCs mobility in a wound healing model in vitro compared to nonloaded counterparts, while these observations need to be validated in vivo. The present findings provide evidence that support applications of OA-MNPs in wound healing and cell therapy involving reparative processes as well as organ and tissue targeting.

4.
Sci Rep ; 12(1): 16698, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202902

RESUMO

Magnetic nanomaterials are increasingly impacting the field of biology and medicine. Their versatility in terms of shape, structure, composition, coating, and magnetic responsivity make them attractive for drug delivery, cell targeting and imaging. Adipose derived-mesenchymal cells (ASCs) are intensely scrutinized for tissue engineering and regenerative medicine. However, differentiation into musculoskeletal lineages can be challenging. In this paper, we show that uncoated nickel nanowires (Ni NW) partially released from their alumina membrane offer a mechanically-responsive substrate with regular topography that can be used for the delivery of magneto-mechanical stimulation. We have used a tailored protocol for improving ASCs adherence to the substrate, and showed that cells retain their characteristic fibroblastic appearance, cytoskeletal fiber distribution and good viability. We report here for the first time significant increase in osteogenic but not adipogenic differentiation of ASCs on Ni NW exposed to 4 mT magnetic field compared to non-exposed. Moreover, magnetic actuation is shown to induce ASCs osteogenesis but not adipogenesis in the absence of external biochemical cues. While these findings need to be verified in vivo, the use of Ni NW substrate for inducing osteogenesis in the absence of specific differentiation factors is attractive for bone engineering. Implant coating with similar surfaces for orthopedic and dentistry could be as well envisaged as a modality to improve osteointegration.


Assuntos
Nanofios , Osteogênese , Tecido Adiposo/metabolismo , Óxido de Alumínio , Diferenciação Celular , Células Cultivadas , Fenômenos Magnéticos , Níquel/metabolismo
5.
Front Bioeng Biotechnol ; 9: 737132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733830

RESUMO

Purpose: Iron oxide based magnetic nanoparticles (MNP) are versatile tools in biology and medicine. Adipose derived mesenchymal stem cells (ADSC) and Wharton Jelly mesenchymal stem cells (WJMSC) are currently tested in different strategies for regenerative regenerative medicine (RM) purposes. Their superiority compared to other mesenchymal stem cell consists in larger availability, and superior proliferative and differentiation potential. Magnetic field (MF) exposure of MNP-loaded ADSC has been proposed as a method to deliver mechanical stimulation for increasing conversion to musculoskeletal lineages. In this study, we investigated comparatively chondrogenic conversion of ADSC-MNP and WJMSC with or without MF exposure in order to identify the most appropriate cell source and differentiation protocol for future cartilage engineering strategies. Methods: Human primary ADSC and WJMSC from various donors were loaded with proprietary uncoated MNP. The in vitro effect on proliferation and cellular senescence (beta galactosidase assay) in long term culture was assessed. In vitro chondrogenic differentiation in pellet culture system, with or without MF exposure, was assessed using pellet histology (Safranin O staining) as well as quantitative evaluation of glycosaminoglycan (GAG) deposition per cell. Results: ADSC-MNP complexes displayed superior proliferative capability and decreased senescence after long term (28 days) culture in vitro compared to non-loaded ADSC and to WJMSC-MNP. Significant increase in chondrogenesis conversion in terms of GAG/cell ratio could be observed in ADSC-MNP. MF exposure increased glycosaminoglycan deposition in MNP-loaded ADSC, but not in WJMSC. Conclusion: ADSC-MNP display decreased cellular senescence and superior chondrogenic capability in vitro compared to non-loaded cells as well as to WJMSC-MNP. MF exposure further increases ADSC-MNP chondrogenesis in ADSC, but not in WJMSC. Loading ADSC with MNP can derive a successful procedure for obtaining improved chondrogenesis in ADSC. Further in vivo studies are needed to confirm the utility of ADSC-MNP complexes for cartilage engineering.

6.
J Biomed Mater Res B Appl Biomater ; 109(5): 630-642, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32940420

RESUMO

Magnetic nanoparticles (MNP) are intensely scrutinized for biomedical applications due to their excellent biocompatibility and adjustable magnetic field (MF) responsiveness. Three-dimensional spheroid culture of ADSC improves stem cell proliferation and differentiation, increasing their potential for clinical applications. In this study we aimed to detect if MF levitated culture of ADSC loaded with proprietary MNP maintain the properties of ADSC and improve their performances. Levitated ADSC-MNP formed aggregates with increased volume and reduced number compared to nonlevitated ones. ADSC-MNP from levitated spheroid displayed higher viability, proliferation and mobility compared to nonlevitated and 2D culture. Levitated and nonlevitated ADSC-MNP spheroids underwent three lineage differentiation, demonstrating preserved ADSC stemness. Quantitative osteogenesis showed similar values in MNP-loaded levitated and nonlevitated spheroids. Significant increases in adipogenic conversion was observed for all 3D formulation. Chondrogenic conversion in levitated and nonlevitated spheroids produced comparable ratio glucosaminoglycan (GAG)/DNA. Increased chondrogenesis could be observed for ADSC-MNP in both levitated and nonlevitated condition. Taken together, ADSC-MNP levitated spheroids retain stemness and display superior cell viability and migratory capabilities. Furthermore, the method consistently increases spheroid maneuverability, potentially facilitating large scale manufacturing and automation. Levitated spheroid culture of ADSC-MNP can be further tested for various application in regenerative medicine and organ modeling.


Assuntos
Adipócitos/citologia , Tecido Adiposo/fisiologia , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Esferoides Celulares/citologia , Adipogenia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Condrócitos/citologia , Condrogênese , Coloides/química , Compostos Férricos/química , Humanos , Microscopia Eletrônica de Transmissão , Osteogênese , Fenótipo , Medicina Regenerativa
7.
Mater Sci Eng C Mater Biol Appl ; 117: 111288, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919649

RESUMO

This work addresses current direction of the nanoparticles-based systems intended for cancer therapy by developing a newly-formulated innovative chemically-engineered anti-tumor composite consisting in a magnetic, fluorescent, lipophilic, and biologically-active carbon heterostructure capable by itself or through coupling with a chemotherapeutic agent to selectively induce tumor cell death. The anti-tumor compound was synthesized through a modified sol-gel method by addition of a low-cost molecule with recently proven anti-tumor properties which was combusted and flash-cooled along with magnetic iron oxides precursors at 250 °C. The synthesized compound consisted in carbon dots, graphene and hematite nanoparticles which endowed the composite with unique simultaneous fluorescence, magnetic and anti-tumor properties. The in-vitro cytotoxicity performed on tumor cells (human osteosarcoma) and normal cells (fibroblasts) showed a selective cytotoxic effect induced after 24 h of treatment by the drug-free composite, leading to a cell death of 37%, for a composite concentration of 0.01 mg/mL per 104 tumor cells, whereas the composite loaded with an antitumor drug (mitoxantrone) boosted the cell death effect to 47% for similar exposure conditions. The method shows high potential as it boosts drug transfer within tumor cells. Different antitumor drugs already in clinical use can be used following their separate or in-cocktail controlled combustion.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacologia , Carbono , Humanos , Fenômenos Magnéticos , Magnetismo
8.
Mater Sci Eng C Mater Biol Appl ; 109: 110652, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228923

RESUMO

Magnetic nanoparticles (MNPs) are versatile tools for various applications in biotechnology and nanomedicine. MNPs-mediated cell tracking, targeting and imaging are increasingly studied for regenerative medicine applications in cell therapy and tissue engineering. Mechanical stimulation influences mesenchymal stem cell differentiation. Here we show that MNPs-mediated magneto-mechanical stimulation of human primary adipose derived stem cells (ADSCs) exposed to variable magnetic field (MF) influences their adipogenic and osteogenic differentiation. ADSCs loaded with biocompatible magnetite nanoparticles of 6.6 nm, and with an average load of 21 picograms iron/cell were exposed to variable low intensity (0.5 mT - LMF) and higher intensity magnetic fields (14.7 and 21.6 mT - HMF). Type, duration, intensity and frequency of MF differently affect differentiation. Short time (2 days) intermittent exposure to LMF increases adipogenesis while longer (7 days) intermittent as well as continuous exposure favors osteogenesis. HMF (21.6 mT) short time intermittent exposure favors osteogenesis. Different exposure protocols can be used to increase differentiation dependently on expected results. Magnetic remotely-actuated MNPs up-taken by ADSCs promotes the shift towards osteoblastic lineage. ADSCs-MNPs under MF exposure could be used for enabling osteoblastic conversion during cell therapy for systemic osteoporosis. Current results enable further in vivo studies investigating the role of remotely-controlled magnetically actuated ADSCs-MNPs for the treatment of osteoporosis.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/química , Osteogênese , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Humanos , Células-Tronco/citologia
9.
Int J Nanomedicine ; 13: 5743-5751, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30310277

RESUMO

INTRODUCTION: Hyperthermia (HT) based on magnetic nanoparticles (MNPs) represents a promising approach to induce the apoptosis/necrosis of tumor cells through the heat generated by MNPs submitted to alternating magnetic fields. However, the effects of temperature distribution on the cancer cells' viability as well as heat resistance of various tumor cell types warrant further investigation. METHODS: In this work, the effects induced by magnetic hyperthermia (MHT) and conventional water-based hyperthermia (WHT) on the viability of human osteosarcoma cells at different temperatures (37°C-47°C) was comparatively investigated. Fe-Cr-Nb-B magnetic nanoparticles were submitted either to alternating magnetic fields or to infrared radiation generated by a water-heated incubator. RESULTS: In terms of cell viability, significant differences could be observed after applying the two HT treatment methods. At about equal equilibrium temperatures, MHT was on average 16% more efficient in inducing cytotoxicity effects compared to WHT, as assessed by MTT cytotoxicity assay. CONCLUSION: We propose the phenomena can be explained by the significantly higher cytotoxic effects initiated during MHT treatment in the vicinity of the heat-generating MNPs compared to the effects triggered by the homogeneously distributed temperature during WHT. These in vitro results confirm other previous findings regarding the superior efficiency of MHT over WHT and explain the cytotoxicity differences observed between the two antitumor HT methods.


Assuntos
Hipertermia Induzida/métodos , Magnetismo , Osteossarcoma/terapia , Água/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Raios Infravermelhos , Campos Magnéticos , Nanopartículas/química , Temperatura
10.
J Nanosci Nanotechnol ; 18(7): 5143-5153, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442706

RESUMO

The use of materials at nanoscale is currently of increasing interest for life sciences and medicine. Magnetic nanoparticles (MNPs) are under scrutiny for a large array of applications in nanomedicine as diagnostic and therapeutic tools. Proprietary Fe-Cr-Nb-B MNPs display heating properties that recommends them as potent agents for delivery of local hyperthermia for the treatment of solid tumours. Stem cell mediated delivery represents a safe and accurate modality to target remote or metastatic tumour sites. In this study we investigated the interaction of Fe-Cr-Nb-B nanoparticles with human adipose derived mesenchymal stem cells and human primary osteoblasts. We found that: (a) bare and chitosan coated Fe-Cr-Nb-B are internalized by both cell types, (b) they can be detected up to 28 days inside the cells without signs of membrane disruption and (c) they do not display in vitro toxicity. MNPs are uploaded by cells in a time dependent manner with maximum uptake after 7-8 days cell-particle incubation. Particle internalization do not interfere with proliferative and differentiation potential (osteogenesis and adipogenesis) demonstrating an unaltered cellular phenotype. Further investigation of the potential effect of MNPs internalization on cytoskeleton dynamics and in inducing oxidative stress will be required as it is of interest for predicting cell migration and survival after transplantation. Present results are encouraging for designing a stemcell mediated delivery of Fe-Cr-Nb-B magnetic nanoparticles to solid tumour sites for hyperthermia applications.


Assuntos
Tecido Adiposo/citologia , Hipertermia Induzida , Nanopartículas de Magnetita , Osteoblastos/fisiologia , Células-Tronco , Quitosana , Sistemas de Liberação de Medicamentos , Humanos , Magnetismo , Nanopartículas , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...