Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 232(11): 1859-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25491927

RESUMO

RATIONALE: The standards of care for Alzheimer's disease, acetylcholinesterase inhibitors such as donepezil (Aricept®), are dose-limited due to adverse side-effects. These adverse events lead to significant patient non-compliance, constraining the dose and magnitude of efficacy that can be achieved. Non-selective muscarinic receptor orthosteric agonists such as Xanomeline have been shown to be effective in treating symptoms as well, but were also poorly tolerated. Therefore, there is an unmet medical need for a symptomatic treatment that improves symptoms and is better tolerated. METHODS: We compared donepezil, xanomeline, and the novel selective muscarinic 1 receptor positive allosteric modulator PQCA in combination with donepezil in the object retrieval detour (ORD) cognition test in rhesus macaque. Gastrointestinal (GI) side effects (salivation and feces output) were then assessed with all compounds to determine therapeutic window. RESULTS: All three compounds significantly reduced a scopolamine-induced deficit in ORD. Consistent with what is observed clinically in patients, both donepezil and xanomeline produced significant GI effects in rhesus at doses equal to or less than a fivefold margin from the minimum effective dose that improves cognition. In stark contrast, PQCA produced no GI side effects when tested at the same dose range. CONCLUSIONS: These data suggest M1 positive allosteric modulators have the potential to improve cognition in Alzheimer's disease with a greater therapeutic margin than the current standard of care, addressing an important unmet medical need.


Assuntos
Cognição/efeitos dos fármacos , Indanos/farmacologia , Agonistas Muscarínicos/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Quinolizinas/farmacologia , Receptor Muscarínico M1/efeitos dos fármacos , Tiadiazóis/farmacologia , Idoso , Doença de Alzheimer/tratamento farmacológico , Animais , Comportamento Apetitivo/efeitos dos fármacos , Atenção/efeitos dos fármacos , Defecação/efeitos dos fármacos , Donepezila , Feminino , Humanos , Indanos/toxicidade , Macaca mulatta , Masculino , Testes Neuropsicológicos , Orientação/efeitos dos fármacos , Piperidinas/toxicidade , Resolução de Problemas/efeitos dos fármacos , Piridinas/toxicidade , Quinolizinas/toxicidade , Salivação/efeitos dos fármacos , Tiadiazóis/toxicidade
2.
J Neurosci ; 34(24): 8336-46, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920637

RESUMO

BACE, a ß-secretase, is an attractive potential disease-modifying therapeutic strategy for Alzheimer's disease (AD) as it results directly in the decrease of amyloid precursor protein (APP) processing through the ß-secretase pathway and a lowering of CNS amyloid-ß (Aß) levels. The interaction of the ß-secretase and α-secretase pathway-mediated processing of APP in the rhesus monkey (nonhuman primate; NHP) CNS is not understood. We hypothesized that CNS inhibition of BACE would result in decreased newly generated Aß and soluble APPß (sAPPß), with increased newly generated sAPPα. A stable isotope labeling kinetics experiment in NHPs was performed with a (13)C6-leucine infusion protocol to evaluate effects of BACE inhibition on CNS APP processing by measuring the kinetics of sAPPα, sAPPß, and Aß in CSF. Each NHP received a low, medium, or high dose of MBI-5 (BACE inhibitor) or vehicle in a four-way crossover design. CSF sAPPα, sAPPß, and Aß were measured by ELISA and newly incorporated label following immunoprecipitation and liquid chromatography-mass spectrometry. Concentrations, kinetics, and amount of newly generated APP fragments were calculated. sAPPß and sAPPα kinetics were similar, but both significantly slower than Aß. BACE inhibition resulted in decreased labeled sAPPß and Aß in CSF, without observable changes in labeled CSF sAPPα. ELISA concentrations of sAPPß and Aß both decreased and sAPPα increased. sAPPα increased by ELISA, with no difference by labeled sAPPα kinetics indicating increases in product may be due to APP shunting from the ß-secretase to the α-secretase pathway. These results provide a quantitative understanding of pharmacodynamic effects of BACE inhibition on NHP CNS, which can inform about target development.


Assuntos
Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Sistema Nervoso Central/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Isótopos de Carbono/metabolismo , Linhagem Celular Tumoral , Sistema Nervoso Central/efeitos dos fármacos , Estudos Cross-Over , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Imunoprecipitação , Leucina/metabolismo , Macaca mulatta , Espectrometria de Massas , Neuroblastoma , Fragmentos de Peptídeos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...