Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 64(3): 100339, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737040

RESUMO

Treatment with acetyl-CoA carboxylase inhibitors (ACCi) in nonalcoholic steatohepatitis (NASH) may increase plasma triglycerides (TGs), with variable changes in apoB concentrations. ACC is rate limiting in de novo lipogenesis and regulates fatty acid oxidation, making it an attractive therapeutic target in NASH. Our objectives were to determine the effects of the ACCi, firsocostat, on production rates of plasma LDL-apoB in NASH and the effects of combined therapy with fenofibrate. Metabolic labeling with heavy water and tandem mass spectrometric analysis of LDL-apoB enrichments was performed in 16 NASH patients treated with firsocostat for 12 weeks and in 29 NASH subjects treated with firsocostat and fenofibrate for 12 weeks. In NASH on firsocostat, plasma TG increased significantly by 17% from baseline to week 12 (P = 0.0056). Significant increases were also observed in LDL-apoB fractional replacement rate (baseline to week 12: 31 ± 20.2 to 46 ± 22.6%/day, P = 0.03) and absolute synthesis rate (ASR) (30.4-45.2 mg/dl/day, P = 0.016) but not plasma apoB concentrations. The effect of firsocostat on LDL-apoB ASR was restricted to patients with cirrhosis (21.0 ± 9.6 at baseline and 44.2 ± 17 mg/dl/day at week 12, P = 0.002, N = 8); noncirrhotic patients did not change (39.8 ± 20.8 and 46.3 ± 14.8 mg/dl/day, respectively, P = 0.51, N = 8). Combination treatment with fenofibrate and firsocostat prevented increases in plasma TG, LDL-apoB fractional replacement rate, and ASR. In summary, in NASH with cirrhosis, ACCi treatment increases LDL-apoB100 production rate and this effect can be prevented by concurrent fenofibrate therapy.


Assuntos
Acetil-CoA Carboxilase , Fenofibrato , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Humanos , Acetil-CoA Carboxilase/antagonistas & inibidores , Apolipoproteínas B/biossíntese , Fenofibrato/uso terapêutico , Fenofibrato/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/biossíntese , Triglicerídeos/sangue , LDL-Colesterol/biossíntese
2.
Aging Cell ; 21(3): e13558, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170180

RESUMO

Age is a risk factor for numerous diseases, including neurodegenerative diseases, cancers, and diabetes. Loss of protein homeostasis is a central hallmark of aging. Activation of the endoplasmic reticulum unfolded protein response (UPRER ) includes changes in protein translation and membrane lipid synthesis. Using stable isotope labeling, a flux "signature" of the UPRER in vivo in mouse liver was developed by inducing ER stress with tunicamycin and measuring rates of both proteome-wide translation and de novo lipogenesis. Several changes in protein synthesis across ontologies were noted with age, including a more dramatic suppression of translation under ER stress in aged mice as compared with young mice. Binding immunoglobulin protein (BiP) synthesis rates and mRNA levels were increased more in aged than young mice. De novo lipogenesis rates decreased under ER stress conditions in aged mice, including both triglyceride and phospholipid fractions. In young mice, a significant reduction was seen only in the triglyceride fraction. These data indicate that aged mice have an exaggerated metabolic flux response to ER stress, which may indicate that aging renders the UPRER less effective in resolving proteotoxic stress.


Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Animais , Estresse do Retículo Endoplasmático/genética , Camundongos , Transdução de Sinais , Triglicerídeos
3.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162995

RESUMO

The unfolded protein response in the endoplasmic reticulum (UPRER) is involved in a number of metabolic diseases. Here, we characterize UPRER-induced metabolic changes in mouse livers in vivo through metabolic labeling and mass spectrometric analysis of lipid and proteome-wide fluxes. We induced UPRER by tunicamycin administration and measured synthesis rates of proteins, fatty acids and cholesterol, as well as RNA-seq. Contrary to reports in isolated cells, hepatic de novo lipogenesis and cholesterogenesis were markedly reduced, as were mRNA levels and synthesis rates of lipogenic proteins. H&E staining showed enrichment with lipid droplets while electron microscopy revealed ER morphological changes. Interestingly, the pre-labeling of adipose tissue prior to UPRER induction resulted in the redistribution of labeled fatty acids from adipose tissue to the liver, with replacement by unlabeled glycerol in the liver acylglycerides, indicating that the liver uptake was of free fatty acids, not whole glycerolipids. The redistribution of adipose fatty acids to the liver was not explicable by altered plasma insulin, increased fatty acid levels (lipolysis) or by reduced food intake. Synthesis of most liver proteins was suppressed under UPRER conditions, with the exception of BiP, other chaperones, protein disulfide isomerases, and proteins of ribosomal biogenesis. Protein synthesis rates generally, but not always, paralleled changes in mRNA. In summary, this combined approach, linking static changes with fluxes, revealed an integrated reduction of lipid and cholesterol synthesis pathways, from gene expression to translation and metabolic flux rates, under UPRER conditions. The reduced lipogenesis does not parallel human fatty liver disease. This approach provides powerful tools to characterize metabolic processes underlying hepatic UPRER in vivo.


Assuntos
Colesterol/metabolismo , Ácidos Graxos/sangue , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Fígado/metabolismo , Tunicamicina/efeitos adversos , Tecido Adiposo/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Lipogênese/efeitos dos fármacos , Masculino , Espectrometria de Massas , Camundongos , Modelos Animais , RNA-Seq , Resposta a Proteínas não Dobradas
4.
J Clin Invest ; 131(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34907907

RESUMO

BACKGROUNDHepatic de novo lipogenesis (DNL) is elevated in nonalcoholic fatty liver disease (NAFLD). Improvements in hepatic fat by dietary sugar reduction may be mediated by reduced DNL, but data are limited, especially in children. We examined the effects of 8 weeks of dietary sugar restriction on hepatic DNL in adolescents with NAFLD and correlations between DNL and other metabolic outcomes.METHODSAdolescent boys with NAFLD (n = 29) participated in an 8-week, randomized controlled trial comparing a diet low in free sugars versus their usual diet. Hepatic DNL was measured as percentage contribution to plasma triglyceride palmitate using a 7-day metabolic labeling protocol with heavy water. Hepatic fat was measured by magnetic resonance imaging-proton density fat fraction.RESULTSHepatic DNL was significantly decreased in the treatment group (from 34.6% to 24.1%) versus the control group (33.9% to 34.6%) (adjusted week 8 mean difference: -10.6% [95% CI: -19.1%, -2.0%]), which was paralleled by greater decreases in hepatic fat (25.5% to 17.9% vs. 19.5% to 18.8%) and fasting insulin (44.3 to 34.7 vs. 35.5 to 37.0 µIU/mL). Percentage change in DNL during the intervention correlated significantly with changes in free-sugar intake (r = 0.48, P = 0.011), insulin (r = 0.40, P = 0.047), and alanine aminotransferase (ALT) (r = 0.39, P = 0.049), but not hepatic fat (r = 0.13, P = 0.532).CONCLUSIONOur results suggest that dietary sugar restriction reduces hepatic DNL and fasting insulin, in addition to reductions in hepatic fat and ALT, among adolescents with NAFLD. These results are consistent with the hypothesis that hepatic DNL is a critical metabolic abnormality linking dietary sugar and NAFLD.TRIAL REGISTRYClinicalTrials.gov NCT02513121.FUNDINGThe Nutrition Science Initiative (made possible by gifts from the Laura and John Arnold Foundation, Ambrose Monell Foundation, and individual donors), the UCSD Altman Clinical and Translational Research Institute, the NIH, Children's Healthcare of Atlanta and Emory University's Children's Clinical and Translational Discovery Core, Children's Healthcare of Atlanta and Emory University Pediatric Biostatistical Core, the Georgia Clinical and Translational Science Alliance, and the NIH National Institute of Diabetes, Digestive, and Kidney Disease.


Assuntos
Dieta com Restrição de Carboidratos , Açúcares da Dieta/efeitos adversos , Lipogênese , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica , Adolescente , Criança , Açúcares da Dieta/administração & dosagem , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 41(12): 2866-2876, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615375

RESUMO

OBJECTIVE: We measured the turnover rates of the LDLR (low-density lipoprotein receptor) and PCSK9 (proprotein convertase subtilisin/kexin type 9) in mice by metabolic labeling with heavy water and mass spectrometry. Approach and Results: In liver of mice fed high-cholesterol diets, LDLR mRNA levels and synthesis rates were markedly lower with complete suppression of cholesterol synthesis and higher cholesterol content, consistent with the Brown-Goldstein model of tissue cholesterol homeostasis. We observed markedly lower PCSK9 mRNA levels and synthesis rates in liver and lower concentrations and synthesis rates in plasma. Hepatic LDLR half-life (t½) was prolonged, consistent with an effect of reduced PCSK9, and resulted in no reduction in hepatic LDLR content despite reduced mRNA levels and LDLR synthesis rates. These changes in PCSK9 synthesis complement and expand the well-established model of tissue cholesterol homeostasis in mouse liver, in that reduced synthesis and levels of PCSK9 counterbalance lower LDLR synthesis by promoting less LDLR catabolism, thereby maintaining uptake of LDL cholesterol into liver despite high intracellular cholesterol concentrations. CONCLUSIONS: Lower hepatic synthesis and secretion of PCSK9, an SREBP2 (sterol response element binding protein) target gene, results in longer hepatic LDLR t½ in response to cholesterol feeding in mice in the face of high intracellular cholesterol content. PCSK9 modulation opposes the canonical lowering of LDLR mRNA and synthesis by cholesterol surplus and preserves LDLR levels. The physiological and therapeutic implications of these opposing control mechanisms over liver LDLR are of interest and may reflect subservience of hepatic cholesterol homeostasis to whole body cholesterol needs.


Assuntos
LDL-Colesterol/metabolismo , Homeostase , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pró-Proteína Convertase 9/metabolismo , Animais , Colesterol na Dieta/administração & dosagem , LDL-Colesterol/sangue , Cromatografia Líquida , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/sangue , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Pró-Proteína Convertase 9/biossíntese , Pró-Proteína Convertase 9/sangue , RNA Mensageiro/sangue , Espectrometria de Massas em Tandem
6.
J Biol Chem ; 296: 100395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33567340

RESUMO

Chronic glucocorticoid exposure causes insulin resistance and muscle atrophy in skeletal muscle. We previously identified phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1) as a primary target gene of skeletal muscle glucocorticoid receptors involved in the glucocorticoid-mediated suppression of insulin action. However, the in vivo functions of Pik3r1 remain unclear. Here, we generated striated muscle-specific Pik3r1 knockout (MKO) mice and treated them with a dexamethasone (DEX), a synthetic glucocorticoid. Treating wildtype (WT) mice with DEX attenuated insulin activated Akt activity in liver, epididymal white adipose tissue, and gastrocnemius (GA) muscle. This DEX effect was diminished in GA muscle of MKO mice, therefore, resulting in improved glucose and insulin tolerance in DEX-treated MKO mice. Stable isotope labeling techniques revealed that in WT mice, DEX treatment decreased protein fractional synthesis rates in GA muscle. Furthermore, histology showed that in WT mice, DEX treatment reduced GA myotube diameters. In MKO mice, myotube diameters were smaller than in WT mice, and there were more fast oxidative fibers. Importantly, DEX failed to further reduce myotube diameters. Pik3r1 knockout also decreased basal protein synthesis rate (likely caused by lower 4E-BP1 phosphorylation at Thr37/Thr46) and curbed the ability of DEX to attenuate protein synthesis rate. Finally, the ability of DEX to inhibit eIF2α phosphorylation and insulin-induced 4E-BP1 phosphorylation was reduced in MKO mice. Taken together, these results demonstrate the role of Pik3r1 in glucocorticoid-mediated effects on glucose and protein metabolism in skeletal muscle.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Glucocorticoides/farmacologia , Glucose/metabolismo , Resistência à Insulina , Músculo Estriado/efeitos dos fármacos , Músculo Estriado/metabolismo , Atrofia Muscular/metabolismo , Animais , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Modelos Animais de Doenças , Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Estriado/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...