Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(34): 7449-7461, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37590118

RESUMO

The ubiquitous event of a protein recognizing small molecules or ligands at its native binding site is crucial for initiating major biological processes. However, how a crowded environment, as is typically represented by a cellular interior, would modulate the protein-ligand search process is largely debated. Excluded volume-based theory suggests that the presence of an inert crowder would reinforce a steady stabilization and enhancement of the protein-ligand recognition process. Here, we counter this long-held perspective via the molecular dynamics simulation and Markov state model of the protein-ligand recognition event in the presence of inert crowders. Specifically, we demonstrate that, depending on concentration, even purely inert crowders can exert a nonmonotonic effect via either stabilizing or destabilizing the protein-ligand binding event. Analysis of the kinetic network of binding pathways reveals that the crowders would either modulate precedent non-native on-pathway intermediates or would devise additional ones in a multistate recognition event across a wide range of concentrations. As an important insight, crowders gradually shift the relative transitional preference of these intermediates toward a native-bound state, with ligand residence time at the binding pocket dictating the trend of nonmonotonic concentration dependence by simple inert crowders.


Assuntos
Simulação de Dinâmica Molecular , Ligantes , Sítios de Ligação , Cinética , Domínios Proteicos
2.
J Phys Chem B ; 127(10): 2198-2213, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36861956

RESUMO

Amyloid aggregation of protein is linked to many neurodegenerative diseases. Identification of small molecules capable of targeting amyloidogenic proteins has gained significant importance. Introduction of hydrophobic and hydrogen bonding interactions through site-specific binding of small molecular ligand to protein can effectively modulate the protein aggregation pathway. Here, we investigate the possible roles of three different bile acids, cholic acid (CA), taurocholic acid (TCA), and lithocholic acid (LCA) with varying hydrophobic and hydrogen bonding properties in inhibiting protein fibrillation. Bile acids are an important class of steroid compounds that are synthesized in the liver from cholesterol. Increasing evidence suggests that altered taurine transport, cholesterol metabolism, and bile acid synthesis have strong implications in Alzheimer's disease. We find that the hydrophilic bile acids, CA and TCA (taurine conjugated form of CA), are substantially more efficient inhibitors of lysozyme fibrillation than the most hydrophobic secondary bile acid LCA. Although LCA binds more strongly with the protein and masks the Trp residues more prominently through hydrophobic interactions, the lesser extent of hydrogen bonding interactions at the active site has made LCA a relatively weaker inhibitor of HEWL aggregation than CA and TCA. The introduction of a greater number of hydrogen bonding channels by CA and TCA with several key amino acid residues which are prone to form oligomers and fibrils has weakened the protein's internal hydrogen bonding capabilities for undergoing amyloid aggregation.


Assuntos
Ácidos e Sais Biliares , Muramidase , Muramidase/química , Clara de Ovo , Amiloide/química , Proteínas Amiloidogênicas , Taurina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...