Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Patterns (N Y) ; 2(3): 100220, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33748797

RESUMO

Viral spread is a complicated function of biological properties, the environment, preventative measures such as sanitation and masks, and the rate at which individuals come within physical proximity. It is these last two elements that governments can control through social-distancing directives. However, infection measurements are almost always delayed, making real-time estimation nearly impossible. Safe Blues is one way of addressing the problem caused by this time lag via online measurements combined with machine learning methods that exploit the relationship between counts of multiple forms of the Safe Blues strands and the progress of the actual epidemic. The Safe Blues protocols and techniques have been developed together with an experimental minimal viable product, presented as an app on Android devices with a server backend. Following initial exploration via simulation experiments, we are now preparing for a university-wide experiment of Safe Blues.

2.
Health Data Sci ; 2021: 9798302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36405358

RESUMO

In the wake of the rapid surge in the COVID-19-infected cases seen in Southern and West-Central USA in the period of June-July 2020, there is an urgent need to develop robust, data-driven models to quantify the effect which early reopening had on the infected case count increase. In particular, it is imperative to address the question: How many infected cases could have been prevented, had the worst affected states not reopened early? To address this question, we have developed a novel COVID-19 model by augmenting the classical SIR epidemiological model with a neural network module. The model decomposes the contribution of quarantine strength to the infection time series, allowing us to quantify the role of quarantine control and the associated reopening policies in the US states which showed a major surge in infections. We show that the upsurge in the infected cases seen in these states is strongly corelated with a drop in the quarantine/lockdown strength diagnosed by our model. Further, our results demonstrate that in the event of a stricter lockdown without early reopening, the number of active infected cases recorded on 14 July could have been reduced by more than 40% in all states considered, with the actual number of infections reduced being more than 100,000 for the states of Florida and Texas. As we continue our fight against COVID-19, our proposed model can be used as a valuable asset to simulate the effect of several reopening strategies on the infected count evolution, for any region under consideration.

3.
Patterns (N Y) ; 1(9): 100145, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33225319

RESUMO

We have developed a globally applicable diagnostic COVID-19 model by augmenting the classical SIR epidemiological model with a neural network module. Our model does not rely upon previous epidemics like SARS/MERS and all parameters are optimized via machine learning algorithms used on publicly available COVID-19 data. The model decomposes the contributions to the infection time series to analyze and compare the role of quarantine control policies used in highly affected regions of Europe, North America, South America, and Asia in controlling the spread of the virus. For all continents considered, our results show a generally strong correlation between strengthening of the quarantine controls as learnt by the model and actions taken by the regions' respective governments. In addition, we have hosted our quarantine diagnosis results for the top 70 affected countries worldwide, on a public platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...