Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(26): 5314-5324, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38869030

RESUMO

A highly efficient and innovative method involving base-mediated oxidative annulation between 2-naphthols and phenylglyoxal monohydrate under visible light irradiation has been successfully developed. This method leads to the formation of oxygen-containing heterocyclic compounds, particularly hydroxy-naphthofuranone derivatives, encompassing a unique quaternary carbon center. An X-ray diffraction study has unambiguously confirmed the structure of one such derivative. In particular, water molecules in this reaction serve various functions as a solvent, reagent, and additive, with the conversion of the process found to be influenced by the volume of water present. This atom-economical approach demonstrates tolerance for different substituents in both phenylglyoxal monohydrate and 2-naphthol, enabling the synthesis of a variety of naphthofuranones in satisfactory to good yields. The formation of a naphthofuranium cationic intermediate under acidic circumstances enables the formation of C-C or C-O bonds with a wide range of aromatic or alcoholic nucleophilic partners. Furthermore, the identification and generation of pinacol-type starting precursors from these naphthofuranone derivatives enable the synthesis of highly regioselective naphthofuran derivatives.

2.
J Org Chem ; 89(13): 9243-9254, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878304

RESUMO

Chemoselective amination is a highly desired synthetic methodology, given its importance as a possible strategy to synthesize various drug molecules and agrochemicals. We, herein, disclose a highly chemoselective Cu(II)-PTABS-promoted amination of pyrimidine structural feature containing different halogen atoms.

3.
J Org Chem ; 89(8): 5337-5352, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38602160

RESUMO

A rapid synthesis of medicinally important spiropyrrolines has been achieved by the reaction of 1,3-indanediones, benzaldehyde, and (1-azidovinyl)benzene under catalyst- and reagent-free conditions. This is the first report to synthesize diverse spiropyrroline compounds from readily available feedstock materials under metal-free conditions.

4.
Bioorg Chem ; 146: 107257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493639

RESUMO

Quorum-sensing (QS) is a cell density-dependent signaling pathway regulated by gene expression for intra- and interspecies communication. We have targeted QS activity in Pseudomonas aeruginosa, an opportunistic human pathogen that causes disease in immunocompromised patients, with a set of probes containing a variety of functional groups, including photoreactive (diazirine) and affinity (alkyne) moieties, that were synthesized using a four-component Ugi reaction (Ugi-4CR).


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Percepção de Quorum , Diazometano/síntese química , Diazometano/química
5.
Chem Commun (Camb) ; 60(4): 416-419, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38084087

RESUMO

The development of an effective molecular catalyst to reduce hydrazine efficiently to ammonia using a suitable reductant and proton source is demanding. Herein, an unprecedented air-stable, phosphine-free ruthenium complex is used as a potent catalyst for hydrazine hydrate reduction to generate ammonia using SmI2 and water under ambient reaction conditions. Maximizing the flow of electrons from the reductant to the hydrazine hydrate via the metal centre results in a greater yield of ammonia while minimizing the evolution of H2 gas as a competing product.

6.
Int J Biol Macromol ; 249: 126084, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37532192

RESUMO

Our cascading attempt to develop new potent molecules now involves designing a series of imidazole derivatives and synthesizing two sets of 2,4,5- tri-substituted (4a-4d) and 1,2,4,5-tetra-substituted (6a-6d) imidazole by the principle of Debus-Radziszewski multicomponent synthesis reaction. The structures of the obtained compounds were confirmed by 1H/13C NMR, FT-IR, elemental analysis, purity and the retention time was analyzed by HPLC. Based upon the binding affinity in the molecular docking studies, we have synthesized different imidazole derivatives from which compound 6c have been found to show more anti-proliferative activity by inducing apoptosis at a higher rate than the other compounds corroborating the in-silico prediction. The structure and crystallinity of compound 4d have been confirmed by single XRD analysis. The synthesized molecules were screened for their in vitro anti-cancer properties in triple negative breast cancer cell line (MDA-MB-231), pancreatic cancer cell lines (MIA PaCa-2) and oral squamous cell carcinoma cell line (H357) and results indicated that all the compounds inhibited the cell proliferation in a concentration-dependent manner at different time points. The compounds 4b and 6d were found to be effective against the S. aureus bacterial strain whereas only compound 4d fairly inhibited the fungal strain of T. rubrum with a MIC 12.5 µg/mL. Molecular docking study reveals good interaction of the synthesized compounds with known target MELK involved in oncogenesis having high binding profiles. The lead compound 6c was further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Staphylococcus aureus , Zíper de Leucina , Espectroscopia de Infravermelho com Transformada de Fourier , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Dinâmica Molecular , Proliferação de Células , Antifúngicos/farmacologia , Antibacterianos/farmacologia , Imidazóis/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral
7.
Chemistry ; 29(70): e202302106, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37605950

RESUMO

N-heterocyclic olefin (NHO) derivatives have an electron-rich as well as highly polarized carabon-carbon (C=C) double bond because of the electron-donating nature of nitrogen and sulphur atoms. While NHOs have been developing as novel organocatalysts and ligands for transition-metal complexes in various organic compound syntheses, different research groups are currently interested in preparing imidazole and triazolium-based chiral NHO catalysts. Some of them have been used for enantioselective organic transformations, but were still elusive. N-heterocyclic olefins, the alkylidene derivatives of N-heterocyclic carbenes (NHC), have shown promising results as effective promoters for numerous organic syntheses such as asymmetric catalysis, hydroborylation, hydrosilylation, reduction, CO2 sequestration, alkylation, cycloaddition, polymerization and the ring-opening reaction of aziridine and epoxides, esterification, C-F bond functionalization, amine coupling, trifluoromethyl thiolation, amination etc. NHOs catalysts with suitable structures can serve as a novel class of Lewis/Bronsted bases with strong basicity and high nucleophilicity properties.These facts strongly suggest their enormous chemical potential as sustainable catalysts for a wide variety of reactions in synthetic chemistry. The synthesis of NHOs and their properties are briefly reviewed in this article, along with a summary of the imidazole and triazole core of NHOs' most recent catalytic uses.

8.
Front Cell Infect Microbiol ; 13: 1134433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560318

RESUMO

Healthcare settings have dramatically advanced the latest medical devices, such as urinary catheters (UC) for infection, prevention, and control (IPC). The continuous or intermittent flow of a warm and conducive (urine) medium in the medical device, the urinary catheter, promotes the formation of biofilms and encrustations, thereby leading to the incidence of CAUTI. Additionally, the absence of an innate immune host response in and around the lumen of the catheter reduces microbial phagocytosis and drug action. Hence, the review comprehensively overviews the challenges posed by CAUTI and associated risks in patients' morbidity and mortality. Also, detailed, up-to-date information on the various strategies that blended/tailored the surface properties of UC to have anti-fouling, biocidal, and anti-adhesive properties to provide an outlook on how they can be better managed with futuristic solutions.


Assuntos
Infecções Relacionadas a Cateter , Infecções Urinárias , Humanos , Biofilmes , Infecções Relacionadas a Cateter/prevenção & controle , Catéteres/efeitos adversos , Incidência , Infecções Urinárias/prevenção & controle , Infecções Urinárias/epidemiologia
9.
J Org Chem ; 88(15): 11036-11044, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37486860

RESUMO

Regioselective amination of polyhalogenated heteroarenes (especially pyrimidines) has extensive synthetic and commercial relevance for drug synthesis applications but is plagued by the lack of effective synthetic strategies. Herein, we report the Cu(II)/PTABS-promoted highly regioselective nucleophilic aromatic substitution (SNAr) of polychlorinated pyrimidines assisted by DFT predictions of the bond dissociation energies of different C-Cl bonds. The unique reactivity of Cu(II)-PTABS has been attributed to the coordination/activation mechanism that has been known to operate in these reactions, but further insights into the catalytic species have also been provided.

10.
Org Biomol Chem ; 21(29): 5944-5948, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37448341

RESUMO

A novel method for the direct amination of N-benzoyl cytosine has been developed, giving access to 2-(dimethylamino)pyrimidine derivatives. A copper(II) catalyst and tert-butyl hydroperoxide easily promote the selective amination process that proceeds via C-OH bond activation. This practical approach can utilize different formamide molecules, N,N-dimethylformamide and N,N-diethylformamide, as efficient amino (-NMe2, -NEt2) sources. Moreover, the facile nature of the procedure, its broad tolerance of aliphatic and aromatic substrates, the high yields and ease of separation of the products, and the fact that it can be conducted under aerobic conditions are all notable advantages of the present protocol.

11.
Org Biomol Chem ; 21(26): 5419-5423, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37334911

RESUMO

A highly efficient one-pot method for the synthesis of 2,4,6-triaryl pyridines has been developed via cascade deamination and annulation. Copper triflate and molecular iodine easily promoted the oxidative cyclization reaction of vinyl azide and benzylamine to access a wide variety of substituted pyridine substrates under an oxygen atmosphere. The presence of benzyl amine enables the cyclization process by providing the aryl functionality and the nitrogen source. Moreover, a broad range of substrates with good functional group tolerance, avoidance of external oxidants, excellent product yields, operational simplicity and mild conditions are the notable advantages of the present protocol.

12.
Front Cell Infect Microbiol ; 13: 1139026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287465

RESUMO

Advancements in biomedical devices are ingenious and indispensable in health care to save millions of lives. However, microbial contamination paves the way for biofilm colonisation on medical devices leading to device-associated infections with high morbidity and mortality. The biofilms elude antibiotics facilitating antimicrobial resistance (AMR) and the persistence of infections. This review explores nature-inspired concepts and multi-functional approaches for tuning in next-generation devices with antibacterial surfaces to mitigate resistant bacterial infections. Direct implementation of natural inspirations, like nanostructures on insect wings, shark skin, and lotus leaves, has proved promising in developing antibacterial, antiadhesive, and self-cleaning surfaces, including impressive SLIPS with broad-spectrum antibacterial properties. Effective antimicrobial touch surfaces, photocatalytic coatings on medical devices, and conventional self-polishing coatings are also reviewed to develop multi-functional antibacterial surfaces to mitigate healthcare-associated infections (HAIs).


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Animais , Biofilmes , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Folhas de Planta
13.
J Org Chem ; 88(13): 8493-8504, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259950

RESUMO

A facile synthetic approach to 6H-pyrrolo[3,2,1-de]acridines has been developed by using cascade N-nucleophilic addition-cyclic Michael addition process of arynes and indoles substituted with Michael acceptors under metal-free conditions. Additionally, photophysical studies of a few of the newly synthesized pyrroloacridine compounds indicated good fluorescence emission properties.


Assuntos
Indóis , Estrutura Molecular , Indóis/química
14.
Org Biomol Chem ; 21(27): 5521-5526, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350240

RESUMO

A one-pot facile synthesis of disubstituted oxazoles has been achieved from vinyl azide and benzylamine. A coherent mixture of iodine and tert-butyl hydroperoxide (TBHP) efficiently promoted oxidative cascade cyclization to construct 2,5-disubstituted oxazoles under aerobic conditions. Notably, the oxidative cyclization involves feasible C(sp3)-functionalization with the elimination of the azide group as the intermediate step. In consequence, the consecutive C-N and C-O bond formations lead to a variety of disubstituted oxazole derivatives. Moreover, the one-pot methodology features a metal-free strategy, readily available reagents, shorter times, good yields, and mild reaction conditions.

15.
Org Biomol Chem ; 21(27): 5587-5591, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37358031

RESUMO

An efficient and one-pot synthesis of 3,3'-bisbenzofuran derivatives has been developed. The protocol involved the use of a Pd catalyst and Cu(OAc)2 along with molecular oxygen as the oxidant to afford bisbenzofurans via a dehydrogenative homo-coupling reaction. The reaction exhibited good functional group/heterocycle tolerance and is amenable for gram scale synthesis.

16.
J Flow Chem ; : 1-18, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-37359287

RESUMO

Nucleosides modification via conventional cross-coupling has been performed using different catalytic systems and found to take place via long reaction times. However, since the pandemic, nucleoside-based antivirals and vaccines have received widespread attention and the requirement for rapid modification and synthesis of these moieties has become a major objective for researchers. To address this challenge, we describe the development of a rapid flow-based cross-coupling synthesis protocol for a variety of C5-pyrimidine substituted nucleosides. The protocol allows for facile access to multiple nucleoside analogues in very good yields in a few minutes compared to conventional batch chemistry. To highlight the utility of our approach, the synthesis of an anti-HSV drug, BVDU was also achieved in an efficient manner using our new protocol. Supplementary Information: The online version contains supplementary material available at 10.1007/s41981-023-00265-1.

17.
Org Biomol Chem ; 21(25): 5176-5180, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37293852

RESUMO

We have utilized N-benzoyl cytosine for efficient transamidation and esterification via catalytic C-N bond cleavage. The one-pot strategy involves the reaction of secondary amide with various aliphatic or aromatic amines and alcohols in the presence of zinc triflate and DTBP, affording diverse amides and esters in excellent yields.

18.
Chem Commun (Camb) ; 59(31): 4640-4643, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36988099

RESUMO

Focusing on a reliable supramolecular synthon approach, novel molecular salts of the antihypertensive medication ketanserin (KTS) with aromatic carboxylic acid derivatives (benzoic acid (BA), 2-hydroxybenzoic acid (2-HBA), and 2,5-dihydroxybenzoic acid (2,5-DHBA)) are reported. Binary salts of KTS with the respective salt former were obtained via solvent-assisted grinding followed by solution crystallization. Salt production was confirmed through crystal structure investigations that revealed proton transfer from the carboxylic acid group of the salt former to the piperidine nitrogen atom of KTS. A rigorous investigation of the crystal packing of novel binary salts of KTS inspired the construction of ternary adducts, and a ternary crystalline product was subsequently identified using milrinone (MLN), another cardiotonic drug. According to our knowledge, this is the first instance of a dual-drug ternary co-crystal combining both antihypertensive drugs. In order to evaluate the impacts of co-crystallization on the in vitro release behaviour of binary and ternary adducts, solubility tests for the cocrystal were carried out under a variety of physiological pH conditions. The results indicate that, in contrast to the parent drug and binary adducts, the solubility rate of the ternary adducts is significantly increased. Finally, the stability of the synthesised adduct was evaluated under a range of conditions, including temperature (40 ± 1 °C), humidity (90% ± 5% RH, 25 °C) and various solvents media, and it was established that they have good stability. We anticipate that the present findings will work with a wide range of medication combinations, providing a potential new approach to create multi-drug systems for cardiovascular disease.


Assuntos
Anti-Hipertensivos , Sais , Anti-Hipertensivos/química , Ketanserina , Sais/química , Solubilidade , Cristalização , Solventes/química
19.
Biomaterials ; 296: 122078, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921442

RESUMO

Gradient scaffolds are isotropic/anisotropic three-dimensional structures with gradual transitions in geometry, density, porosity, stiffness, etc., that mimic the biological extracellular matrix. The gradient structures in biological tissues play a major role in various functional and metabolic activities in the body. The designing of gradients in the scaffold can overcome the current challenges in the clinic compared to conventional scaffolds by exhibiting excellent penetration capacity for nutrients & cells, increased cellular adhesion, cell viability & differentiation, improved mechanical stability, and biocompatibility. In this review, the recent advancements in designing gradient scaffolds with desired biomimetic properties, and their implication in tissue regeneration applications have been briefly explained. Furthermore, the gradients in native tissues such as bone, cartilage, neuron, cardiovascular, skin and their specific utility in tissue regeneration have been discussed in detail. The insights from such advances using gradient-based scaffolds can widen the horizon for using gradient biomaterials in tissue regeneration applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Cartilagem/fisiologia , Porosidade , Regeneração Óssea
20.
Chem Asian J ; 17(18): e202200485, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35844079

RESUMO

C1 -selective deuteration of aromatic aldehydes is of great importance for isotopic labeling and for improving the characteristics of drug molecules. Due to the recent increase in the use of deuterated pharmacological drugs, there is a pressing need for synthetic procedures that are efficient to produce deuterated aromatic aldehyde analouges. Deuterium labeling approaches are typically used as an effective tool for researching pharmaceutical absorption, distribution, metabolism, and excretion (ADME). Furthermore, deuterium-labeled pharmaceuticals are intended to increase therapeutic effectiveness and reduce side effects by extending the half-life of drug response. In the last few years, several catalytic or non-catalytic methods have been developed to synthesize deuterated aromatic aldehydes. In this concern, we offer a brief overview of the various synthetic strategies and practical methods for the formyl-selective deuterium labeling of aromatic aldehydes using different deuterium sources.


Assuntos
Aldeídos , Catálise , Deutério , Marcação por Isótopo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...