Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 9145, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831168

RESUMO

We present an engineered nanolattice material with enhanced mechanical properties that can be broadly applied as a thin film over large areas. The nanolattice films consist of ordered, three-dimensional architecture with thin-shell tubular elements, resulting in favorable modulus-density scaling (n ~ 1.1), enhanced energy dissipation, and extremely large material recoverability for strains up to 20% under normal compressive loading. At 95.6% porosity, the nanolattice film has demonstrated modulus of 1.19 GPa and specific energy dissipation of 325.5 kJ/kg, surpassing previously reported values at similar densities. The largest length scale in the reported nanolattice is the 500 nm unit-cell lattice constant, allowing the film to behave more like a continuum material and be visually unobservable. Fabricated using three-dimensional colloidal nanolithography and atomic layer deposition, the process can be scaled for large-area patterning. The proposed nanolattice film can find applications as a robust multifunctional insulating film that can be applied in integrated photonic elements, optoelectronic devices, and microcircuit chips.

2.
Part Fibre Toxicol ; 14(1): 26, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716119

RESUMO

BACKGROUND: Pulmonary toxicity of multi-walled carbon nanotubes (MWCNTs) is influenced by physicochemical characteristics and genetic susceptibility. We hypothesized that contrasting rigidities of tangled (t) versus rod-like (r) MWCNTs would result in differing immunologic or fibrogenic responses in mice and that these responses would be exaggerated in transgenic mice lacking the signal transducer and activator of transcription-1 (STAT1), a susceptible mouse model of pulmonary fibrosis. METHODS: Male wild type (Stat1 +/+ ) and STAT1-deficient (Stat1 -/- ) mice were exposed to 4 mg/kg tMWCNTs, rMWCNTs, or vehicle alone via oropharyngeal aspiration and evaluated for inflammation at one and 21 days post-exposure via histopathology, differential cell counts, and cytokine levels in bronchoalveolar lavage fluid (BALF). Granuloma formation, mucous cell metaplasia, and airway fibrosis were evaluated by quantitative morphometry. Airway epithelial cell proliferation was assessed by bromodeoxyuridine (BrdU) incorporation. Cytokine protein levels in BALF and serum IgE levels were measured by ELISA. Lung protein Smad2/3 levels and activation were measured by Western blot. Lung mRNAs were measured by PCR. RESULTS: There was a 7-fold difference in rigidity between tMWCNTs and rMWCNTs as determined by static bending ratio. Both MWCNT types resulted in acute inflammation (neutrophils in BALF) after one-day post-exposure, yet only rMWCNTs resulted in chronic inflammation at 21 days as indicated by neutrophil influx and larger granulomas. Both MWCNTs induced BrdU uptake in airway epithelial cells, with the greatest proliferative response observed in rMWCNT-exposed mice after one-day. Only rMWCNTs induced mucous cell metaplasia, but this index was not different between genotypes. Stat1 -/- mice had higher levels of baseline serum IgE than Stat1 +/+ mice. Greater airway fibrosis was observed with rMWCNTs compared to tMWCNTs, and exaggerated airway fibrosis was seen in the Stat1 -/- mouse lungs with rMWCNTs but not tMWCNTs. Increased fibrosis correlated with elevated levels of TGF-ß1 protein levels in the BALF of Stat1 -/- mice exposed to rMWCNTs and increased lung Smad2/3 phosphorylation. CONCLUSIONS: Rigidity plays a key role in the toxicity of MWCNTs and results in increased inflammatory, immunologic, and fibrogenic effects in the lung. STAT1 is an important protective factor in the fibroproliferative response to rMWCNTs, regulating both induced TGF-ß1 production and Smad2/3 phosphorylation status. Therefore, both rigidity and genetic susceptibility should be major considerations for risk assessment of MWCNTs.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente , Hipersensibilidade Respiratória/induzido quimicamente , Fator de Transcrição STAT1/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Predisposição Genética para Doença , Granuloma do Sistema Respiratório/induzido quimicamente , Granuloma do Sistema Respiratório/metabolismo , Granuloma do Sistema Respiratório/patologia , Imunoglobulina E/sangue , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Knockout , Nanotubos de Carbono/química , Fenótipo , Fosforilação , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Medição de Risco , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo
3.
Nanotoxicology ; 11(3): 313-326, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28277982

RESUMO

Carbon nanotubes (CNTs), a prototypical engineered nanomaterial, have been increasingly manufactured for a variety of novel applications over the past two decades. However, since CNTs possess fiber-like shape and cause pulmonary fibrosis in rodents, there is concern that mass production of CNTs will lead to occupational exposure and associated pulmonary diseases. The aim of this study was to use contemporary proteomics to investigate the mechanisms of cellular response in E10 mouse alveolar epithelial cells in vitro after exposure to multi-walled CNTs (MWCNTs) that were functionalized by atomic layer deposition (ALD). ALD is a method used to generate highly uniform and conformal nanoscale thin-film coatings of metals to enhance novel conductive properties of CNTs. We hypothesized that specific types of metal oxide coatings applied to the surface of MWCNTs by ALD would determine distinct proteomic profiles in mouse alveolar epithelial cells in vitro that could be used to predict oxidative stress and pulmonary inflammation. Uncoated (U)-MWCNTs were functionalized by ALD with zinc oxide (ZnO) to yield Z-MWCNTs or aluminum oxide (Al2O3) to yield A-MWCNTs. Significant differential protein expression was found in the following critical pathways: mTOR/eIF4/p70S6K signaling and Nrf-2 mediated oxidative stress response increased following exposure to Z-MWCNTs, interleukin-1 signaling increased following U-MWCNT exposure, and inhibition of angiogenesis by thrombospondin-1, oxidative phosphorylation, and mitochondrial dysfunction increased following A-MWCNT exposure. This study demonstrates that specific types of metal oxide thin film coatings applied by ALD produce distinct cellular and biochemical responses related to lung inflammation and fibrosis compared to uncoated MWCNT exposure in vitro.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Proteômica/métodos , Óxido de Alumínio/toxicidade , Células Epiteliais Alveolares/química , Animais , Células Cultivadas , Camundongos , Fibrose Pulmonar/etiologia , Óxido de Zinco/toxicidade
4.
Langmuir ; 32(32): 8029-33, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27459627

RESUMO

Wicking, the absorption of liquid into narrow spaces without the assistance of external forces, has drawn much attention due to its potential applications in many engineering fields. Increasing surface roughness using micro/nanostructures can improve capillary action to enhance wicking. However, reducing the structure length scale can also result in significant viscous forces to impede wicking. In this work, we demonstrate enhanced wicking dynamics by using nanostructures with three-dimensional (3D) hierarchical features to increase the surface area while mitigating the obstruction of liquid flow. The proposed structures were engineered using a combination of interference lithography and hydrothermal synthesis of ZnO nanowires, where structures at two length scales were independently designed to control wicking behavior. The fabricated hierarchical 3D structures were tested for water and ethanol wicking properties, demonstrating improved wicking dynamics with intermediate nanowire lengths. The experimental data agree with the derived fluid model based on the balance of capillary and vicious forces. The hierarchical wicking structures can be potentially used in applications in water harvesting surfaces, microfluidics, and integrated heat exchangers.

5.
Part Fibre Toxicol ; 13(1): 29, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27278808

RESUMO

BACKGROUND: Atomic layer deposition (ALD) is a method for applying conformal nanoscale coatings on three-dimensional structures. We hypothesized that surface functionalization of multi-walled carbon nanotubes (MWCNTs) with polycrystalline ZnO by ALD would alter pro-inflammatory cytokine expression by human monocytes in vitro and modulate the lung and systemic immune response following oropharyngeal aspiration in mice. METHODS: Pristine (U-MWCNTs) were coated with alternating doses of diethyl zinc and water over increasing ALD cycles (10 to 100 ALD cycles) to yield conformal ZnO-coated MWCNTs (Z-MWCNTs). Human THP-1 monocytic cells were exposed to U-MWCNTs or Z-MWCNTs in vitro and cytokine mRNAs measured by Taqman real-time RT-PCR. Male C57BL6 mice were exposed to U- or Z-MWCNTs by oropharyngeal aspiration (OPA) and lung inflammation evaluated at one day post-exposure by histopathology, cytokine expression and differential counting of cells in bronchoalveolar lavage fluid (BALF) cells. Lung fibrosis was evaluated at 28 days. Cytokine mRNAs (IL-6, IL-1ß, CXCL10, TNF-α) in lung, heart, spleen, and liver were quantified at one and 28 days. DNA synthesis in lung tissue was measured by bromodeoxyuridine (BrdU) uptake. RESULTS: ALD resulted in a conformal coating of MWCNTs with ZnO that increased proportionally to the number of coating cycles. Z-MWCNTs released Zn(+2) ions in media and increased IL-6, IL-1ß, CXCL10, and TNF-α mRNAs in THP-1 cells in vitro. Mice exposed to Z-MWCNTs by OPA had exaggerated lung inflammation and a 3-fold increase in monocytes and neutrophils in BALF compared to U-MWCNTs. Z-MWCNTs, but not U-MWCNTs, induced IL-6 and CXCL10 mRNA and protein in the lungs of mice and increased IL-6 mRNA in heart and liver. U-MWCNTs but not Z-MWCNTs stimulated airway epithelial DNA synthesis in vivo. Lung fibrosis at 28 days was not significantly different between mice treated with U-MWCNT or Z-MWCNT. CONCLUSIONS: Pulmonary exposure to ZnO-coated MWCNTs produces a systemic acute phase response that involves the release of Zn(+2), lung epithelial growth arrest, and increased IL-6. ALD functionalization with ZnO generates MWCNTs that possess increased risk for human exposure.


Assuntos
Reação de Fase Aguda/induzido quimicamente , Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Óxido de Zinco/toxicidade , Reação de Fase Aguda/imunologia , Reação de Fase Aguda/metabolismo , Reação de Fase Aguda/patologia , Poluentes Atmosféricos/química , Animais , Linhagem Celular , Citocinas/agonistas , Citocinas/genética , Citocinas/metabolismo , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão e Varredura , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Fibrose Pulmonar/etiologia , RNA Mensageiro/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Propriedades de Superfície , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...