Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia Open ; 9(3): 865-890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637998

RESUMO

Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.


Assuntos
Técnicas de Cultura de Células , Epilepsia , Humanos , Epilepsia/genética , Epilepsia/terapia , Células-Tronco Pluripotentes Induzidas , Neurônios/metabolismo
2.
Arthroplasty ; 5(1): 20, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024967

RESUMO

BACKGROUND: Intraoperative fluoroscopy (IFC) is gaining popularity in total hip arthroplasty (THA), with the aim to achieve better component positioning and therefore eventually reduced revision rates. This meta-analysis investigated the benefit of IFC by comparing it to intraoperative assessment alone. The primary outcome was component positioning and the secondary outcomes included complications and revision rates. METHODS: PubMed, Embase and Cochrane Central Register of Controlled Trials were searched for both randomized clinical trials (RCT) and observational studies. Effect estimates for radiographic cup position, offset/leg length difference and outliers from a safe zone were pooled across studies using random effects models and presented as a weighted odds ratio (OR) with a corresponding 95% confidence interval (95% CI). RESULTS: A total of 10 observational studies involving 1,394 patients were included. No randomized trials were found. IFC showed no significant reduction in acetabular cup position (inclination and anteversion), offset, leg-length discrepancies, revision (none reported) or overall complication rates. CONCLUSION: The current meta-analysis found no differences in cup positioning, offset, leg length discrepancy, the incidence of complications or revision surgery. It should be acknowledged that the included studies were generally performed by experienced surgeons. The benefit of intraoperative fluoroscopy might become more evident at an early phase of the learning curve for this procedure. Therefore, its role has yet to be defined.

3.
Front Cell Neurosci ; 16: 855161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370554

RESUMO

Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties via the Nrf2 pathway. We have explored the effect of SFN in a model of acquired epilepsy induced by Li-Cl pilocarpine in immature rats (12 days old). Energy metabolites PCr, ATP, glucose, glycogen, and lactate were determined by enzymatic fluorimetric methods during the acute phase of SE. Protein expression was evaluated by Western blot (WB) analysis. Neuronal death was scored on the FluoroJadeB stained brain sections harvested 24 h after SE. To assess the effect of SFN on glucose metabolism we have performed a series of 18F-DG µCT/PET recordings 1 h, 1 day, and 3 weeks after the induction of SE. Responses of cerebral blood flow (CBF) to electrical stimulation and their influence by SFN were evaluated by laser Doppler flowmetry (LDF). We have demonstrated that the Nrf2 pathway is upregulated in the CNS of immature rats after SFN treatment. In the animals that had undergone SE, SFN was responsible for lowering glucose uptake in most regions 1 h after the induction of SE. Moreover, SFN partially reversed hypometabolism observed after 24 h and achieved full reversal at approximately 3 weeks after SE. Since no difference in cell death was observed in SFN treated group, these changes cannot be attributed to differences in neurodegeneration. SFN per se did not affect the glucose uptake at any given time point suggesting that SFN improves endogenous CNS ability to adapt to the epileptogenic insult. Furthermore, we had discovered that SFN improves blood flow and accelerates CBF response to electrical stimulation. Our findings suggest that SFN improves metabolic changes induced by SE which have been identified during epileptogenesis in various animal models of acquired epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...