Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 3164, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453371

RESUMO

The stimulating connection between the reversal of near-field plasmonic binding force and the role of symmetry-breaking has not been investigated comprehensively in the literature. In this work, the symmetry of spherical plasmonic heterodimer-setup is broken forcefully by shining the light from a specific side of the set-up instead of impinging it from the top. We demonstrate that for the forced symmetry-broken spherical heterodimer-configurations: reversal of lateral and longitudinal near-field binding force follow completely distinct mechanisms. Interestingly, the reversal of longitudinal binding force can be easily controlled either by changing the direction of light propagation or by varying their relative orientation. This simple process of controlling binding force may open a novel generic way of optical manipulation even with the heterodimers of other shapes. Though it is commonly believed that the reversal of near-field plasmonic binding force should naturally occur for the presence of bonding and anti-bonding modes or at least for the Fano resonance (and plasmonic forces mostly arise from the surface force), our study based on Lorentz-force dynamics suggests notably opposite proposals for the aforementioned cases. Observations in this article can be very useful for improved sensors, particle clustering and aggregation.

2.
Sci Rep ; 7(1): 6938, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761075

RESUMO

The behavior of Fano resonance and the reversal of near field optical binding force of dimers over different substrates have not been studied so far. Notably, for particle clustering and aggregation, controlling the near filed binding force can be a key factor. In this work, we observe that if the closely located plasmonic cube homodimers over glass or high permittivity dielectric substrate are illuminated with plane wave, no reversal of lateral optical binding force occurs. But if we apply the same set-up over a plasmonic substrate, stable Fano resonance occurs along with the reversal of near field lateral binding force. It is observed that during such Fano resonance, stronger coupling occurs between the dimers and plasmonic substrate along with the strong enhancement of the substrate current. Such binding force reversals of plasmonic cube dimers have been explained based on the observed unusual behavior of optical Lorentz force during the induced stronger Fano resonance and the dipole-dipole resonance. Although previously reported reversals of near field optical binding forces were highly sensitive to particle size/shape (i.e. for heterodimers) and inter-particle distance, our configuration provides much relaxation of those parameters and hence could be verified experimentally with simpler experimental set-ups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...