Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(46): 22504-22514, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31746905

RESUMO

A versatile, low-cost and easily scalable synthesis method is presented for producing silicon nanowires (SiNWs) as a pure powder. It applies air-stable diphenylsilane as a Si source and gold nanoparticles as a catalyst and takes place in a sealed reactor at 420 °C (pressure <10 bar). Micron-sized NaCl particles, acting as a sacrificial support for the catalyst particles during NW growth, can simply be removed with water during purification. This process gives access to SiNWs of precisely controlled diameters in the range of 10 ± 3 nm with a high production yield per reactor volume (1 mg cm-3). The reaction was scaled up to 500 mg of SiNWs without altering the morphology or diameter. Adding diphenylphosphine results in SiNW n-type doping as confirmed by ESR spectroscopy and EDX analyses. The measured SiNW doping level closely follows the initial dopant concentration. Doping induces both an increase in diameter and a sharp increase of electrical conductivity for P concentrations >0.4%. When used in symmetric supercapacitor devices, 1% P-doped SiNWs exhibit an areal capacity of 0.25 mF cm-2 and retention of 80% of the initial capacitance after one million cycles, demonstrating excellent cycling stability of the SiNW electrodes in the presence of organic electrolytes.

2.
Phys Chem Chem Phys ; 19(2): 1320-1327, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27966691

RESUMO

Most of the recent developments in EELS modelling has been focused on getting a better agreement with measurements. Less work however has been dedicated to bringing EELS calculations to larger structures that can more realistically describe actual systems. The purpose of this paper is to present a hybrid approach well adapted to calculating the whole set of localised EELS core-loss edges (at the XAS level of theory) on larger systems using only standard tools, namely the WIEN2k and VASP codes. We illustrate the usefulness of this method by applying it to a set of amorphous silicon structures in order to explain the flattening of the silicon L2,3 EELS edge peak at the onset. We show that the peak flattening is actually caused by the collective contribution of each of the atoms to the average spectrum, as opposed to a flattening occurring on each individual spectrum. This method allowed us to reduce the execution time by a factor of 3 compared to a usual-carefully optimised-WIEN2k calculation. It provided even greater speed-ups on more complex systems (interfaces, ∼300 atoms) that will be presented in a future paper. This method is suited to calculate all the localized edges of all the atoms of a structure in a single calculation for light atoms as long as the core-hole effects can be neglected.

3.
Nano Lett ; 16(12): 7381-7388, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960471

RESUMO

Continuous solid electrolyte interface (SEI) formation remains the limiting factor of the lifetime of silicon nanoparticles (SiNPs) based negative electrodes. Methods that could provide clear diagnosis of the electrode degradation are of utmost necessity to streamline further developments. We demonstrate that electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM can be used to quickly map SEI components and quantify LixSi alloys from single experiments with resolutions down to 5 nm. Exploiting the low-loss part of the EEL spectrum allowed us to circumvent the degradation phenomena that have so far crippled the application of this technique on such beam-sensitive compounds. Our results provide unprecedented insight into silicon aging mechanisms in full cell configuration. We observe the morphology of the SEI to be extremely heterogeneous at the particle scale but with clear chemical evolutions with extended cycling coming from both SEI accumulation and a transition from lithium-rich carbonate-like compounds to lithium-poor ones. Thanks to the retrieval of several results from a single data set we were able to correlate local discrepancies in lithiation to the initial crystallinity of silicon as well as to the local SEI chemistry and morphology. This study emphasizes how initial heterogeneities in the percolating electronic network and the porosity affect SiNPs aggregates along cycling. These findings pinpoint the crucial role of an optimized formulation in silicon-based thick electrodes.

4.
Phys Chem Chem Phys ; 12(1): 220-6, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20024463

RESUMO

All compounds present in the lithium-silicon binary phase diagram were synthesized and analyzed by electron energy-loss spectroscopy. In order to limit beam damage, and to develop a fast and local method of characterizing silicon negative electrodes, the valence energy-loss spectrum region was investigated, in particular the very intense plasmon peak in these alloys. Experimental spectra are in strong agreement with theoretical ones obtained from density functional theory. These results constitute a database for Li(x)Si alloys' plasmon energies. The method is applied to the study of the first discharge of a silicon electrode, thus identifying a Li(2.9+/-0.3)Si phase in equilibrium with Si on the voltage plateau. A nucleation process of this phase in the pristine Si is revealed, as well as a possible over-lithiation beyond the end of discharge Li(15)Si(4) crystalline phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...