Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133893, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452684

RESUMO

Sensitive and rapid identification of volatile organic compounds (VOCs) at ppm level with complex composition is vital in various fields ranging from respiratory diagnosis to environmental safety. Herein, we demonstrate a SERS gas sensor with size-selective and multiplexed identification capabilities for VOCs by executing the pre-enrichment strategy. In particular, the macro-mesoporous structure of graphene aerogel and micropores of metal-organic frameworks (MOFs) significantly improved the enrichment capacity (1.68 mmol/g for toluene) of various VOCs near the plasmonic hotspots. On the other hand, molecular MOFs-based filters with different pore sizes could be realized by adjusting the ligands to exclude undesired interfering molecules in various detection environments. Combining these merits, graphene/AuNPs@ZIF-8 aerogel gas sensor exhibited outstanding label-free sensitivity (up to 0.1 ppm toluene) and high stability (RSD=14.8%, after 45 days storage at room temperature for 10 cycles) and allowed simultaneous identification of multiple VOCs in a single SERS measurement with high accuracy (error < 7.2%). We visualize that this work will tackle the dilemma between sensitivity and detection efficiency of gas sensors and will inspire the design of next-generation SERS technology for selective and multiplexed detection of VOCs.

2.
ACS Sens ; 9(1): 483-493, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38206578

RESUMO

Two-dimensional transition metal carbon/nitrides (MXenes) are promising candidates to revolutionize next-generation wearable sensors as high-performance surface-enhanced Raman scattering (SERS) substrates. However, low sensitivity of pure MXene nanosheets and weak binding force or uncontrolled in situ growth of plasmonic nanoparticles on hybrid MXene composites limit their progress toward universal and reliable sensors. Herein, we designed and manufactured a highly sensitive, structurally stable wearable SERS sensor by in situ fabrication of plasmonic nanostructures on the flexible TiVC membranes via the maximization of chemically reducing sites using alkaline treatment. DFT calculations and experimental characterization demonstrated that the hydroxyl functional groups on the surface of MXenes can facilitate the reduction of metal precursors and the nucleation of gold nanoparticles (AuNPs) and can be covalently attached to AuNPs. Thus, the fabricated flexible TiVC-OH-Au sensor satisfied the rigorous mechanical requirements for wearable sensors. In addition, combining the electromagnetic (EM) enhancement from dense AuNPs formed by the activation of nucleation sites and charge transfer (CT) between target molecule and substrate induced by the abundant DOS near the Fermi level of TiVC, the fabricated sensor exhibits ultrasensitivity, long-term stability, good signal repeatability, and excellent mechanical durability. Moreover, the proof-of-concept application of the wearable SERS sensor in sweat sensing was demonstrated to monitor the content of nicotine, methotrexate, nikethamide, and 6-acetylmorphine in sweat at the molecular level, which was an important step toward the universality and practicality of the wearable sensing technology.


Assuntos
Nanopartículas Metálicas , Nitritos , Elementos de Transição , Dispositivos Eletrônicos Vestíveis , Ouro/química , Nanopartículas Metálicas/química , Monitorização Fisiológica
3.
Small ; 20(26): e2309806, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243852

RESUMO

The impedance matching and high loss capabilities of composites with homogeneous distribution are limited owing to high addition and lack of structural design. Developing composites with heterogeneous distribution can achieve strong and wide electromagnetic (EM) wave absorption. However, challenges such as complex design and unclear absorption mechanisms still exist. Herein, a novel composite with a heterogeneous distribution gradient is successfully constructed via MOF derivatives Co@ nitrogen-doped carbon (Co@NC) anchored on carbon foam (CF) matrix (MDCF). Notably, the concentration of MOF can easily control the gradient structure. In particular, the morphologies of MOF derivatives on the surface of CF undergo a transition from the collapse of the inner layer to the integrity of the outer layer, accompanied by a continuous reduction in the size of Co nanoparticles. Correspondingly, enhanced interface polarization from the core-shell of Co@NC and good impedance matching of MDCF can be obtained. The optimized MDCF exhibits the minimum reflection loss of -68.18 dB at 2.01 mm and effective absorption bandwidth covering the entire X-band. Moreover, MDCF exhibits lightweight characteristics, excellent compressive strength, and low radar cross-section reduction. This work highlights the immense potential of composites with heterogeneous distribution for achieving high-performance EM wave absorption.

4.
Nanoscale ; 16(9): 4352-4377, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38275275

RESUMO

Semiconductor-based photocatalysis has attracted significant interest due to its capacity to directly exploit solar energy and generate solar fuels, including water splitting, CO2 reduction, pollutant degradation, and bacterial inactivation. However, achieving the maximum efficiency in photocatalytic processes remains a challenge owing to the speedy recombination of electron-hole pairs and the limited use of light. Therefore, significant endeavours have been devoted to addressing these issues. Specifically, well-designed heterojunction photocatalysts have been demonstrated to exhibit enhanced photocatalytic activity through the physical distancing of electron-hole pairs generated during the photocatalytic process. In this review, we provide a systematic discussion ranging from fundamental mechanisms to material strategies, focusing on TiO2-based heterojunction photocatalysts. Current efforts are focused on developing heterojunction photocatalysts based on TiO2 for a variety of photocatalytic applications, and these projects are explained and assessed. Finally, we offer a concise summary of the main insights and challenges in the utilization of TiO2-based heterojunction photocatalysts for photocatalysis. We expect that this review will serve as a valuable resource to improve the efficiency of TiO2-based heterojunctions for energy generation and environmental remediation.

5.
Biosens Bioelectron ; 237: 115531, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473547

RESUMO

Developing substrates that combine sensitivity and signal stability is a major challenge in surface enhanced Raman scattering (SERS) research. Herein, we present a flexible triple-enhanced Raman Scattering MXene/Au nanocubes (AuNCs) sensor fabricated by selective filtration of Ti3C2Tx MXene/AuNCs hybrid on the Ti3C2Tx MXene membrane and subsequent treatment with 1H,1H,2H,2H-perfluoro-octyltriethoxysilane (FOTS). The resultant superhydrophobic MXene/AuNCs-FOTS membrane not only provides the SERS substrate with environmental stability, but also imparts analyte enrichment to enhance the sensitivity (LOD = 1 × 10-14 M) and reliability (RSD = 6.41%) for Rhodamine 6G (R6G) molecules owing to the attenuation of the coffee ring effect. Moreover, the triple enhancement mechanism of combining plasmonic coupling enhancement from plasmonic coupling (EM) of nearby AuNCs at lateral and longitudinal direction of MXene/AuNCs-FOTS membrane, charge transfer (CT) from Ti3C2Tx MXene and target molecules and analyte enrichment function provides the substrate with excellent SERS performance (EF = 3.19 × 109), and allows efficient quantification of biomarkers in urine. This work could provide new insights into MXenes as building blocks for high-performance substrates and fill existing gaps in SERS techniques.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Análise Espectral Raman/métodos , Reprodutibilidade dos Testes , Ouro/química , Nanopartículas Metálicas/química
6.
J Hazard Mater ; 457: 131846, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37320905

RESUMO

Fabrication of highly elastic three-dimensional aerogel adsorbents with outstanding adsorption capacities is a long pursuit for the treatment of industrial contaminated water. In this work, a magnetic reduced graphene oxide (rGO)/Fe3O4/carbon nanotubes (CNTs) aerogel material was constructed by the electrostatic attraction between the negatively charged GO and positively charged CNTs following a one-pot water bath treatment. The as-synthesized aerogel demonstrated high compressive stress (28.4 kPa) and lower density (24.11 mg/cm3) with exceptional adsorption capacities for versatile adsorbates which are attributed to CNTs and magnetic Fe3O4 nanoparticles. The effect of pH, initial concentration of adsorbates (dyes, Cd (ІІ) ions, organic solvents, and pump oil), content of CNTs and cyclic times on the adsorption capacities of the aerogel were investigated in detail. Furthermore, from simulation, the adsorption kinetics, and thermodynamics of the aerogel for adsorbates were more satisfied by endothermic quasi-second-order kinetic model with characteristic physical adsorption. Thus, the optimized rGO/Fe3O4/CNTs-10 aerogel adsorbent can be used as a powerful and versatile tool to deal with contaminated industrial or domestic wastewater.

7.
ACS Sens ; 8(3): 1287-1298, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36867056

RESUMO

High sensitivity, good signal repeatability, and facile fabrication of flexible surface enhanced Raman scattering (SERS) substrates are common pursuits of researchers for the detection of probe molecules in a complex environment. However, fragile adhesion between the noble-metal nanoparticles and substrate material, low selectivity, and complex fabrication process on a large scale limit SERS technology for wide-ranging applications. Herein, we propose a scalable and cost-effective strategy to a fabricate sensitive and mechanically stable flexible Ti3C2Tx MXene@graphene oxide/Au nanoclusters (MG/AuNCs) fiber SERS substrate from wet spinning and subsequent in situ reduction processes. The use of MG fiber provides good flexibility (114 MPa) and charge transfer enhancement (chemical mechanism, CM) for a SERS sensor and allows further in situ growth of AuNCs on its surface to build highly sensitive hot spots (electromagnetic mechanism, EM), promoting the durability and SERS performance of the substrate in complex environments. Therefore, the formed flexible MG/AuNCs-1 fiber exhibits a low detection limit of 1 × 10-11 M with a 2.01 × 109 enhancement factor (EFexp), signal repeatability (RSD = 9.80%), and time retention (remains 75% after 90 days of storage) for R6G molecules. Furthermore, the l-cysteine-modified MG/AuNCs-1 fiber realized the trace and selective detection of trinitrotoluene (TNT) molecules (0.1 µM) via Meisenheimer complex formation, even by sampling the TNT molecules at a fingerprint or sample bag. These findings fill the gap in the large-scale fabrication of high-performance 2D materials/precious-metal particle composite SERS substrates, with the expectation of pushing flexible SERS sensors toward wider applications.


Assuntos
Grafite , Nanopartículas Metálicas , Trinitrotolueno , Grafite/química , Análise Espectral Raman , Nanopartículas Metálicas/química
8.
J Colloid Interface Sci ; 618: 129-140, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334361

RESUMO

The graphitization degree is of great importance for determining the electromagnetic (EM) wave attenuation loss behavior. The conductive loss is considered to be the mechanism resulting from tailoring the graphitization degree. There is a lack of in-depth research on the dipole polarization caused by defects and functional groups and the interface polarization caused by graphite/amorphous carbon. Herein, lightweight carbon foam (CF) bulk derived from mesophase pitch was prepared to clarify the effect of the graphitization degree systematically. The results demonstrate that with an increase graphitization degree, the interfacial polarization improves and dipole polarization decreases. The synergistic effect of conduction loss and dipole and interfacial polarization dominates the impedance matching and further changes the EM loss behavior of CFs. Particularly, the minimum reflection loss is - 16.69 dB and effective absorption bandwidth is 3.63 GHz, the EM interference shielding effectiveness attains 35.13 dB and the compressive strength is up to 11.73 MPa when the optimal graphitization degree is achieved. Therefore, this work elucidates the effect of the interface polarization of graphite/amorphous carbon, thus providing a valuable insight into the design of advanced carbon-based materials for EM wave absorption and shielding.

9.
Environ Res ; 195: 110742, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515579

RESUMO

Chlorophenols are very important environmental pollutants, which have created huge problems for both aquatic and terrestrial lives. Therefore, their removal needs urgent, effective, and advanced technologies to safeguard our environment for future generation. This review encompasses a comprehensive study of the applications of chlorophenols, their hazardous effects and photocatalytic degradation under light illumination. The effect of various factors such as pH and presence of different anions on the photocatalytic oxidation of chlorophenols have been elaborated comprehensively. The production of different oxidizing agents taking part in the photodegradation of chlorophenols are given a bird eye view. The photocatalytic degradation mechanism of different chlorophenols over various photocatalyts has been discussed in more detail and elaborated that how different photocatalysts degrade the same chlorophenols with the aid of different oxidizing agents produced during photocatalysis. Finally, a future perspective has been given to deal with the effective removal of these hazardous pollutants from the environment.


Assuntos
Clorofenóis , Catálise , Oxidantes , Oxirredução , Fotólise
10.
Adv Mater ; 32(46): e2004270, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33043501

RESUMO

Liquid crystal elastomers (LCEs) are of interest for applications such as soft robotics and shape-morphing devices. Among the different actuation mechanisms, light offers advantages such as spatial and local control of actuation via the photothermal effect. However, the unwanted aggregation of the light-absorbing nanoparticles in the LCE matrix will limit the photothermal response speed, actuation performance, and repeatability. Herein, a near-infrared-responsive LCE composite consisting of up to 0.20 wt% poly(ethylene glycol)-modified gold nanorods (AuNRs) without apparent aggregation is demonstrated. The high Young's modulus, 20.3 MPa, and excellent photothermal performance render repeated and fast actuation of the films (actuation within 5 s and recovery in 2 s) when exposed to 800 nm light at an average output power of ≈1.0 W cm-2 , while maintaining a large actuation strain (56%). Further, it is shown that the same sheet of AuNR/LCE film (100 µm thick) can be morphed into different shapes simply by varying the motifs of the photomasks.

11.
Nanomaterials (Basel) ; 9(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658659

RESUMO

A flexible filter paper based composite electrode was prepared via the convenient one-step synthesis of silver doped graphene for the first time, followed by in-situ polymerization of aniline monomers. Using L-ascorbic acid for simultaneous reduction of grapheme oxide and silver nitrate, we provided a new and green method to prepare graphene hybrid sheets without toxicity. It was found that the as-fabricated hybrid electrode formed a three-dimensional porous architecture, which not only increased the specific surface area of composite, but also facilitated the ion diffusion of the electrolyte. In addition, according to the tests of electrochemical performances, the flexible hybrid electrode subsequently exhibited exceptional specific capacitance of 437.3 F/g, energy density of 1133.5 W·h/kg and power density of 88.8 kW/kg, respectively. Meanwhile, the as-prepared hybrid demonstrated a good cycling stability with only 10.99% specific capacitance deterioration after 5000 times of cycling. This preparation technology presented here shows great potential for the development and application of wearable and portable energy storage devices, particularly for flexible supercapacitors. Moreover, this study puts forward a general, simple and low-cost route of fabricating a novel flexible electrode on a large scale, eventually for environmental protection.

12.
Nanomaterials (Basel) ; 9(9)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546805

RESUMO

An asymmetric supercapacitor was prepared on a sheet of filter paper with two modified surfaces acting as electrodes in 1 M potassium hydroxide aqueous solution. By choosing carbon nanotubes and two different kinds of metal oxides (zinc oxide and ferro ferric oxide) as electrode materials, the asymmetric supercapacitor was successfully fabricated. The results showed that this device exhibited a wide potential window of 1.8 V and significantly improved electrochemical performances of its counterparts. Particularly, the one-sheet asymmetric supercapacitor demonstrated high energy density of 116.11 W h/kg and power density 27.48 kW/kg, which was attributed to the combined action and shortened distance between the two electrodes, respectively. Besides, it showed superior electrochemical cycling stability with 87.1% capacitance retention under room temperature. These outstanding results can not only give researchers new insights into compact energy storage systems, but they also provide a good prospect for flexible asymmetric supercapacitors.

13.
Materials (Basel) ; 12(8)2019 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-31013898

RESUMO

A novel high-performance carbon foam (CF) was fabricated through the addition of phenolic resin (PR) into a coal tar pitch (CTP) based precursor. The effects of mass fraction of a PR additive on the crystalline structures, morphologies, compressive strength (σ) and thermal conductivity (λ) of resultant CF material were investigated systematically. Characterization showed a strong dependence of CF's performance from the composition and optical texture of the precursor, which were mainly depending on the polycondensation and polymerization reactions between PR and raw CTP. Comparing with the strength of pristine CF at 6.5 MPa, the σ of mCF-9 (13.1 MPa) was remarkably enhanced by 100.1%. However, the λ of mCF-9 substantially reduced to 0.9 m-1K-1 compared with 18.2 W m-1K-1 of pristine CF. Thus, this modification strategy to produce microporous CF materials from raw CTP provides a new protocol for the fabrication of high-performance carbon based materials.

14.
Nature ; 557(7705): 409-412, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769673

RESUMO

The scalable and sustainable manufacture of thick electrode films with high energy and power densities is critical for the large-scale storage of electrochemical energy for application in transportation and stationary electric grids. Two-dimensional nanomaterials have become the predominant choice of electrode material in the pursuit of high energy and power densities owing to their large surface-area-to-volume ratios and lack of solid-state diffusion1,2. However, traditional electrode fabrication methods often lead to restacking of two-dimensional nanomaterials, which limits ion transport in thick films and results in systems in which the electrochemical performance is highly dependent on the thickness of the film1-4. Strategies for facilitating ion transport-such as increasing the interlayer spacing by intercalation5-8 or introducing film porosity by designing nanoarchitectures9,10-result in materials with low volumetric energy storage as well as complex and lengthy ion transport paths that impede performance at high charge-discharge rates. Vertical alignment of two-dimensional flakes enables directional ion transport that can lead to thickness-independent electrochemical performances in thick films11-13. However, so far only limited success11,12 has been reported, and the mitigation of performance losses remains a major challenge when working with films of two-dimensional nanomaterials with thicknesses that are near to or exceed the industrial standard of 100 micrometres. Here we demonstrate electrochemical energy storage that is independent of film thickness for vertically aligned two-dimensional titanium carbide (Ti3C2T x ), a material from the MXene family (two-dimensional carbides and nitrides of transition metals (M), where X stands for carbon or nitrogen). The vertical alignment was achieved by mechanical shearing of a discotic lamellar liquid-crystal phase of Ti3C2T x . The resulting electrode films show excellent performance that is nearly independent of film thickness up to 200 micrometres, which makes them highly attractive for energy storage applications. Furthermore, the self-assembly approach presented here is scalable and can be extended to other systems that involve directional transport, such as catalysis and filtration.

15.
Nanomaterials (Basel) ; 7(3)2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28336889

RESUMO

The synthesis of 3D lamellar graphene/BaFe12O19 composites was performed by oxidizing graphite and sequentially self-propagating combustion triggered process. The 3D lamellar graphene structures were formed due to the synergistic effect of the tremendous heat induced gasification as well as huge volume expansion. The 3D lamellar graphene/BaFe12O19 composites bearing 30 wt % graphene present the reflection loss peak at -27.23 dB as well as the frequency bandwidth at 2.28 GHz (< -10 dB). The 3D lamellar graphene structures could consume the incident waves through multiple Reflection and scattering within the layered structures, Prolonging the propagation path of electromagnetic waves in the absorbers.

16.
Sci Rep ; 6: 33833, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671848

RESUMO

The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m-1·K-1 with a bulk density of 453 kg·m-3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m-1·K-1) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g-1 at a current density of 100 mA·g-1, and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

17.
ACS Appl Mater Interfaces ; 6(23): 21500-9, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25365781

RESUMO

Demands to increase the stored energy density of electrostatic capacitors have spurred the development of materials with enhanced dielectric breakdown, improved permittivity, and reduced dielectric loss. Polymer nanocomposites (PNCs), consisting of a blend of amorphous polymer and dielectric nanofillers, have been studied intensely to satisfy these goals; however, nanoparticle aggregates, field localization due to dielectric mismatch between particle and matrix, and the poorly understood role of interface compatibilization have challenged progress. To expand the understanding of the inter-relation between these factors and, thus, enable rational optimization of low and high contrast PNC dielectrics, we compare the dielectric performance of matrix-free hairy nanoparticle assemblies (aHNPs) to blended PNCs in the regime of low dielectric contrast to establish how morphology and interface impact energy storage and breakdown across different polymer matrices (polystyrene, PS, and poly(methyl methacrylate), PMMA) and nanoparticle loadings (0-50% (v/v) silica). The findings indicate that the route (aHNP versus blending) to well-dispersed morphology has, at most, a minor impact on breakdown strength trends with nanoparticle volume fraction; the only exception being at intermediate loadings of silica in PMMA (15% (v/v)). Conversely, aHNPs show substantial improvements in reducing dielectric loss and maintaining charge/discharge efficiency. For example, low-frequency dielectric loss (1 Hz-1 kHz) of PS and PMMA aHNP films was essentially unchanged up to a silica content of 50% (v/v), whereas traditional blends showed a monotonically increasing loss with silica loading. Similar benefits are seen via high-field polarization loop measurements where energy storage for ∼15% (v/v) silica loaded PMMA and PS aHNPs were 50% and 200% greater than respective comparable PNC blends. Overall, these findings on low dielectric contrast PNCs clearly point to the performance benefits of functionalizing the nanoparticle surface with high-molecular-weight polymers for polymer nanostructured dielectrics.

18.
Langmuir ; 30(48): 14434-42, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25398014

RESUMO

The role of polymeric ligands on the optical transparency of polymer-matrix composites is analyzed by evaluating the effect of surface modification on the scattering cross-section of particle fillers in uniform particle dispersions. For the particular case of poly(styrene-r-acrylonitrile)-grafted silica particles embedded in poly(methyl methacrylate), it is shown that the tethering of polymeric chains with appropriate optical properties (such as to match the effective refractive index of the brush particle to the embedding matrix) facilitates the reduction of the particle scattering cross-section by several orders of magnitude as compared to pristine particle analogues. The conditions for minimizing the scattering cross-section of particle fillers by polymer-graft modification are established on the basis of effective medium as well as core-shell Mie theory and validated against experimental data on uniform liquid and solid particle dispersions. Effective medium theory is demonstrated to provide robust estimates of the "optimum polymer-graft composition" to minimize the scattering cross-section of particle fillers even in the limit of large particle dimensions (comparable to the wavelength of light). The application of polymer-graft modification to the design of large (500 nm diameter) silica particle composites with reduced scattering cross-section is demonstrated.

19.
Macromol Rapid Commun ; 34(20): 1642-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24105959

RESUMO

Sharp dynamic thermal gradient (∇T ≈ 45 °C mm(-1)) field-driven assembly of cylinder-forming block copolymer (c-BCP) films filled with PS-coated gold nanoparticles (AuNPs; dNP ≈ 3.6 nm, φNP ≈ 0-0.1) is studied. The influence of increasing AuNP loading fraction on dispersion and assembly of AuNPs within c-BCP (PS-PMMA) films is investigated via both static and dynamic thermal gradient fields. With φNP increasing, a sharp transition from vertical to random in-plane horizontal cylinder orientation is observed due to enrichment of AuNPs at the substrate side and favorable interaction of PMMA chains with gold cores. Furthermore, a detachable capping elastomer layer can self-align these random oriented PMMA microdomains into unidirectional hybrid AuNP/c-BCP nanolines, quantified with an alignment order parameter, S.


Assuntos
Nanopartículas Metálicas/química , Polímeros/química , Ouro/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Polimetil Metacrilato/química , Poliestirenos/química
20.
Langmuir ; 29(28): 8989-96, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23786358

RESUMO

The governing parameters controlling the miscibility of particle additives within polymeric host media are analyzed for the particular case of silica particle fillers embedded within a poly(methyl methacrylate) (PMMA) matrix. For athermal polymer-graft modification of particles (corresponding to equal chemical composition of graft and matrix polymer), compatibility is found to be a sensitive function of the degree of polymerization of graft and host polymer chains as well as the particle radius. In agreement with theoretical predictions, uniform particle dispersion is observed if the degree of polymerization of grafted chains is comparable to (or exceeds) the corresponding value of the polymer matrix. The resulting restriction to high degree of polymerization limits the accessible inorganic fraction that is attainable in athermal particle/polymer blends. In contrast, favorable interaction between grafted polymer chains and the polymeric host (as realized in the case of poly(styrene-r-acrylonitrile)-grafted particles embedded within PMMA matrix) is shown to facilitate thermodynamically stable and uniform particle dispersion across the entire compositional range even in the limit of large particle size, short grafted chains, and high molecular matrix chains. The synthesis of thermoplastic composite materials with inorganic fraction exceeding 50 vol % combining quantitative optical limiting within the UV frequency range and polymer-like mechanical properties is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...