Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987981

RESUMO

In this study, we used a starch paste stabilizer to synthesize ZnSe: Mn/ZnS- Starch and ZnSe/ZnS: Mn/ZnS-starch quantum dot (QDs) in a non-toxic aqueous solvent. The -CH2-OH group of the starch paste promotes dispersibility and improves the compatibility of quantum dots with antibodies, its bonding is observed in the FTIR spectrum. Besides, the Mn-doped ZnS buffer shell with various concentrations (1, 3, 5, 7, and 9%) influence structure, optical, and photoluminescence of QDs properties were investigated in detail. The greatest luminescence intensity is achieved at a molar ratio of 3% Mn2+/Zn2+. Moreover, the ZnS: Mn buffer shell helps to enhance the fluorescence intensity and quantum yield (QY) of the ZnSe/ZnS: Mn/ZnS QDs, which are higher than ZnSe: Mn/ZnS-starch QDs. Through protein A and EDC bridging, ZnSe/ZnS:3%Mn/ZnS- Starch resulted in good signal and sensitivity, with no toxicity to E. coli O157:H7 and MRSA strains.

2.
RSC Adv ; 13(24): 16248-16259, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37266492

RESUMO

An innovative p-n heterojunction Bi2S3/ZnCo2O4 composite was first fabricated via a two-step co-precipitation and hydrothermal method. By controlling the weight amount of Na2S and Bi(NO3)3 precursor, different heterogeneous xBi2S3/ZnCo2O4 were synthesized (x = 0, 2, 6, 12, and 20). The p-n heterojunction Bi2S3/ZnCo2O4 was characterized by structural, optical, and photochemical properties and the photocatalyst decoloration of indigo carmine. Mott-Schottky plots proved a heterojunction formed between n-Bi2S3 and p-ZnCo2O4. Furthermore, the investigation of the photocurrent response indicated that the Bi2S3/ZnCo2O4 composite displayed an enhanced response, which was respectively 4.6 and 7.3 times (4.76 µA cm-2) greater than that of the pure Bi2S3 (1.02 µA cm-2) and ZnCo2O4 (0.65 µA cm-2). Especially the optimized p-n Bi2S3/ZnCo2O4 heterojunction with 12 wt% Bi2S3 showed the highest photocatalyst efficacy of 92.1% at 40 mg L-1 solutions, a loading of 1.0 g L-1, and a pH of 6 within 90 min of visible light illumination. These studies prove that p-n Bi2S3/ZnCo2O4 heterojunction photocatalysts can greatly boost their photocatalytic performance because the inner electric field enhances the process of separating photogenerated electron-hole pairs. Furthermore, this composite catalyst showed good stability and recyclability for environmental remediation.

3.
RSC Adv ; 13(8): 5208-5218, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36777945

RESUMO

In this work, Ta-doped ZnO (Ta-ZnO) nanomaterials were synthesized by the hydrothermal method at different temperatures (110, 150, and 170 °C) for the photodegradation of methylene blue (MB) under visible light. Ta doping significantly affects the crystal defects, optical properties, and MB photocatalytic efficiency of ZnO materials. The optical absorption edge of Ta-ZnO 150 was redshifted compared to undoped ZnO, correlating to bandgap narrowing (E gTa-ZnO = 2.92 eV; E gZnO = 3.07 eV), implying that Ta doped ZnO is capable of absorbing visible light. Besides, Ta-doping was the reason for enhanced blue light emission in the photoluminescence spectrum, which is related to the oxygen defect V 0 O. It is also observed in the XPS spectra, where the percentage of oxygen in the oxygen-deficient regions (O531.5 eV) of Ta-ZnO150 is higher than that of ZnO150. It is an important factor in enhancing ZnO's photocatalytic efficiency. The MB degradation efficiency of Ta-doped ZnO reached the highest for Ta-ZnO 150 and was 2.5 times higher than ZnO under a halogen lamp (HL). Notably, the influence of hydrothermal temperature on the structural, morphological, and photoelectrochemical properties was discussed in detail. As a result, the optimal hydrothermal temperature for synthesizing the nanorod is 150 °C. Furthermore, photocatalytic experiments were also performed under simulated sunlight and natural sunlight. The nature of the photo-oxidative degradation of MB was also investigated.

4.
J Asian Nat Prod Res ; 21(9): 867-872, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29986612

RESUMO

From an EtOAc-soluble fraction of the leaves of Azadirachta indica, two new 28-norlimonoids named nimbandiolactone-21 (1) and nimbandioloxyfuran (2), together with nimbandiolactone-23 (3), were isolated. Their relative structures were elucidated based on NMR spectroscopic interpretation and biosynthetic consideration. Nimbandioloxyfuran (2) and nimbandiolactone-23 (3) showed potent α-glucosidase inhibitory activity, with the IC50 values of 46.2 and 38.7 µM, respectively.


Assuntos
Azadirachta/química , Limoninas/química , Folhas de Planta/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...