Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 27(8): 1351-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27150507

RESUMO

Collision induced dissociation (CID) is one of the most established techniques for tandem mass spectrometry analysis. The CID of mass selected ion could be realized by ion resonance excitation with a digital rectangular waveform. The method is simple, and highly efficient CID result could be obtained by optimizing the experimental parameters, such as digital waveform voltage, frequency, and q value. In this work, the relationship between ion trapping waveform voltage and frequency at preselected q value, the relationship between waveform frequency and the q value at certain ion trapping voltage for optimum CID efficiency were investigated. Experiment results showed that the max CID efficiency of precursor reserpine ions can be obtained at different trapping waveform voltage and frequency when q and ß are different. Based on systematic experimental analysis, the optimum experimental conditions for high CID efficiency can be calculated at any selected ß or q. By using digital ion trap technology, the CID process and efficient fragmentation of parent ions can be realized by simply changing the trapping waveform amplitude, frequency, and the ß values in the digital ion trap mass spectrometry. The technology and method are simple. It has potential use in ion trap mass spectrometry. Graphical Abstract ᅟ.

2.
J Am Soc Mass Spectrom ; 27(4): 596-606, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810433

RESUMO

The ion enhanced activation and collision-induced dissociation (CID) by simultaneous dipolar excitation of ions in the two radial directions of linear ion trap (LIT) have been recently developed and tested by experiment. In this work, its detailed properties were further studied by theoretical simulation. The effects of some experimental parameters such as the buffer gas pressure, the dipolar excitation signal phases, power amplitudes, and frequencies on the ion trajectory and energy were carefully investigated. The results show that the ion activation energy can be significantly increased by dual-direction excitation using two identical dipolar excitation signals because of the addition of an excitation dimension and the fact that the ion motion radius related to ion kinetic energy can be greater than the field radius. The effects of higher-order field components, such as dodecapole field on the performance of this method are also revealed. They mainly cause ion motion frequency shift as ion motion amplitude increases. Because of the frequency shift, there are different optimized excitation frequencies in different LITs. At the optimized frequency, ion average energy is improved significantly with relatively few ions lost. The results show that this method can be used in different kinds of LITs such as LIT with 4-fold symmetric stretch, linear quadrupole ion trap, and standard hyperbolic LIT, which can significantly increase the ion activation energy and CID efficiency, compared with the conventional method.


Assuntos
Íons/química , Espectrometria de Massas/métodos , Algoritmos , Simulação por Computador , Cinética , Modelos Químicos , Movimento (Física)
3.
J Mass Spectrom ; 50(12): 1400-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26634975

RESUMO

It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial-ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. In this study, the effect of octopole potential and some other higher order potential on the performance of LIT mass analyzer is investigated. A simple and effective method, which is to add some octopole component by building a LIT with a pair of rectangular electrodes and a pair of semi-circular electrodes, is reported. Its properties were studied by numerical simulations and experiments. The results showed that a certain amount of positive octopole component could be produced by simply adjusting the position and width of the rectangular electrodes. A resolution of over 1200 at m/z 609 (~1600 Da/s) was observed in this type of LIT. They also performed tandem mass spectrometry well. The device with optimum geometry for ion ejection from rectangular electrodes provided comparable performance to that for ion ejection from semi-circular electrodes. This type of LIT design is easy for fabrication and assembly.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Simulação por Computador , Eletrodos , Desenho de Equipamento , Reserpina
4.
Anal Chem ; 87(11): 5561-7, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25919746

RESUMO

Collision-induced dissociation (CID) in linear ion traps is usually performed by applying a dipolar alternating current (AC) signal to one pair of electrodes, which results in ion excitation mainly in one direction. In this paper, we report simulation and experimental studies of the ion excitation in two coordinate directions by applying identical dipolar AC signals to two pairs of electrodes simultaneously. Theoretical analysis and simulation results demonstrate that the ion kinetic energy is higher than that using the conventional CID method. Experimental results show that more activation energy (as determined by the intensity ratio of the a4/b4 fragments from the CID of protonated leucine enkephalin) can be deposited into parent ions in this method. The dissociation rate constant in this method was about 3.8 times higher than that in the conventional method under the same experimental condition, at the Mathieu parameter qu (where u = x, y) value of 0.25. The ion fragmentation efficiency is also significantly improved. Compared with the conventional method, the smaller qu value can be used in this method to obtain the same internal energy deposited into ions. Consequently, the "low mass cut-off" is redeemed and more fragment ions can be detected. This excitation method can be implemented easily without changing any experimental parameters.


Assuntos
Encefalina Leucina/química , Íons/química , Técnicas de Química Analítica , Encefalina Leucina/análise
5.
J Mass Spectrom ; 49(7): 579-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25044842

RESUMO

Unimolecular reactivities of different N-benzylidene-2-hydroxylaniline anions were investigated in gas phase by electrospray ionization tandem mass spectrometry. All the collision-induced dissociation spectra of N-benzylidene-2-hydroxylaniline anions show similar ions at phenyl anions, neutral loss of benzonitrile and benzoxazole anions, respectively. The possible fragmentation pathway was probed through deuterium labeling and various group substituents experiments. Computational results were applied to shed light on the mechanism of fragmentation patterns. The proton in the CH=N is reactive in the formation of the concerned ions. Its direct transfer to the oxygen results in 2-hydroxyphenyl anion. Proton abstraction between benzoxazole and phenyl anion leads to the formation of benzene and benzoxazole anion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...