Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194705

RESUMO

Epilepsy is one of the most prevalent chronic neurological disorders characterized by frequent unprovoked epileptic seizures. Epileptic seizures can develop from a broad range of underlying abnormalities such as tumours, strokes, infections, traumatic brain injury, developmental abnormalities, autoimmune diseases, and genetic predispositions. Sometimes epilepsy is not easily diagnosed and treated due to the large diversity of symptoms. Undiagnosed and untreated seizures deteriorate over time, impair cognition, lead to injuries, and can sometimes result in death. This review gives details about epilepsy, its classification on the basis of International League Against Epilepsy, current therapeutics which are presently offered for the treatment of epilepsy. Despite of the fact that more than 30 different anti-epileptic medication and antiseizure drugs are available, large number of epileptic patients fail to attain prolonged seizure independence. Poor onsite bioavailability of drugs due to blood brain barrier poses a major challenge in drug delivery to brain. The present review covers the limitations with the state-of-the-art strategies for managing seizures and emphasizes the role of nanotechnology in overcoming these issues. Various nano-carriers like polymeric nanoparticles, dendrimers, lipidic nanoparticles such as solid lipid nanoparticles, nano-lipid carriers, have been explored for the delivery of anti-epileptic drugs to brain using oral and intranasal routes. Nano-carries protect the encapsulated drugs from degradation and provide a platform to deliver controlled release over prolonged periods, improved permeability and bioavailability at the site of action. The review also emphasises in details about the role of neuropeptides for the treatment of epilepsy.


Assuntos
Epilepsia , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Anticonvulsivantes/metabolismo , Anticonvulsivantes/uso terapêutico , Encéfalo/metabolismo , Nanotecnologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37907488

RESUMO

INTRODUCTION: The repurposing of drugs for their anticancer potential is gaining a lot of importance in drug discovery. AIMS: The present study aims to explore the potential of Simvastatin (SIM), a drug used in the treatment of high cholesterol, and thymoquinone (Nigella Sativa) (THY) for its anti-cancer activity on breast cancer cell lines. Thymoquinone is reported to have many potential medicinal properties exhibiting antioxidant, antiinflammatory, anti-cancer, and activities like tissue growth and division, hormone regulation, immune response and development, and cell signaling. METHODS: In this analysis, we explored the inhibitory effects of the combination of simvastatin ad thymoquinone on two breast cancer cell lines viz MCF-7 and MDA-MB-231 cells. The combined effect of simvastatin ad thymoquinone on cell viability, colony formation, cell migration, and orientation of more programmed cell death in vitro was studied. Cell cycle arrest in the G2/M phase was concomitant with the combined effect of SIM and THY persuading apoptosis and generating reactive oxygen species (ROS). RESULTS: The cell cycle arrest in combined treatment was 8.1% on MCF-7 cells and 3.8 % for MDA-MB-231 cells an increased apoptosis was observed when cells were treated in combination which was about 76.20% and 58.15 % respectively for MCF-7 and MDA-MB-231 cells. CONCLUSION: It was concluded that the combined effect of simvastatin and thymoquinone stimulates apoptosis in breast cancer cells.

3.
Int J Biol Macromol ; 252: 126471, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619678

RESUMO

The present work focuses on the development of surface modified transferrin PLGA nanoparticles loaded with clonidine for nose to brain delivery. The CLD-Tf-PLGA-NPs were developed using double emulsification, followed by solvent evaporation and characterization. Particle size, PDI and Zeta potential of the nanoparticles was 199.5 ± 1.36 nm, 0.291, -17.4 ± 6.29 mV respectively with EE% 86.2 ± 2.12 %, and DL%, 7.8 ± 0.48 %. TEM, SEM and FTIR analysis were carried out to confirm the size and transferrin coating over the surface of nanoparticles. In-vitro drug release profile were studied in PBS (pH 7.4) and SNF (pH 5.5) for 72 h and highest release was observed in PBS 89.54 ± 3.17 %. Cellular assays were conducted on Neuro-2a cells to check the cytotoxicity and uptake of Tf-modified PLGA nanoparticles and the cell viability% was obtained to be 61.85 ± 4.48 % even at maximum concentration (40Cmax) with uptake of approximately 97 %. Histopathological studies were also performed to identify the cytotoxicity on nasal epithelium along with in-vivo biodistribution and pharmacodynamics studies to assess the concentration of drug in the mice brain and behavioural responses after intranasal delivery of surface modified nanoparticles. The results showed significant increase in concentration of drug in brain and behavioural improvements in mice (p < 0.05).


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Camundongos , Animais , Sistemas de Liberação de Medicamentos/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Transferrina/química , Clonidina , Distribuição Tecidual , Encéfalo/metabolismo , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
4.
J Microencapsul ; 40(7): 534-548, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530105

RESUMO

AIM: Present study focuses on the development of P80 coated PLGA Nanoparticles loaded with drugs, paroxetine (P80-Par-PLGA-NPs) and clonidine (P80-CLD-PLGA-NPs) for in-vitro evaluation of Cellular Uptake & Cytotoxicity on Neuro-2a cells. METHOD: P80-Par-PLGA-NPs and P80-CLD-PLGA-NPs were developed and characterised for zeta size, potential, PDI, EE%, DL%, TEM, SEM, FTIR, DSC, in-vitro release, cytotoxicity, histopathological and cell uptake studies using rhodamine loaded P80-NPs. RESULT: Mean particle diameter of P80-Par-PLGA-NPs and P80-CLD-PLGA-NPs was 204; 182.7 nm, ZP of -21.8; -18.72 mV and 0.275; 0.341 PDI, respectively. TEM and SEM images revealed homogenous surface morphology. In-vitro drug release showed sustained and complete release in 72 h. Cell viability (>90%) at Cmax and no cytotoxicity in histopathology was observed. Significant higher uptake (96.9%) of P80-modified-NPS was observed as compared to unmodified-NPs (81%) (p < 0.05). CONCLUSION: The finding clearly indicated a higher cell uptake of drugs via surface modified P80-coated PLGA-NPs as compared to unmodified particles.

5.
Curr Neuropharmacol ; 21(3): 517-535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35794771

RESUMO

Brain disorders are a prevalent and rapidly growing problem in the medical field as they adversely affect the quality of life of a human. With an increase in life expectancy, it has been reported that diseases like Alzheimer's, Parkinson's, stroke and brain tumors, along with neuropsychological disorders, are also being reported at an alarmingly high rate. Despite various therapeutic methods for treating brain disorders, drug delivery to the brain has been challenging because of a very complex Blood Brain Barrier, which precludes most drugs from entering the brain in effective concentrations. Nano-carrier-based drug delivery systems have been reported widely by researchers to overcome this barrier layer. These systems due to their small size, offer numerous advantages; however, their short residence time in the body owing to opsonization hinders their success in vivo. This review article focuses on the various aspects of modifying the surfaces of these nano-carriers with polymers, surfactants, protein, antibodies, cell-penetrating peptides, integrin binding peptides and glycoproteins such as transferrin & lactoferrin leading to enhanced residence time, desirable characteristics such as the ability to cross the blood-brain barrier (BBB), increased bioavailability in regions of the brain and targeted drug delivery.


Assuntos
Encefalopatias , Nanopartículas , Humanos , Qualidade de Vida , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Barreira Hematoencefálica/metabolismo , Encefalopatias/metabolismo
6.
AAPS PharmSciTech ; 23(8): 298, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380129

RESUMO

Alzheimer's disease is becoming a common disorder of the elderly population due to shrinkage of the brain size with age and many other neurological complications. To provide an effective treatment option, memantine-encapsulated polymeric nanoparticles were prepared in the study. The nanoparticles were prepared by using nanoprecipitation followed by homogenization and ultrasonication methods, characterized on the basis of particle size, polydispersity index, and zeta potential. Further, in vitro release profile, cytotoxicity analysis, and Giemsa staining were conducted. To observe the efficacy of nanoparticles in scopolamine-induced Alzheimer models in vivo studies were also carried out. The results showed that nanoparticles were in the nano range with a particle size of 58.04 nm and - 23 mV zeta potential. The in vitro release was also sustained till 24 h with ~ 100% release in selected media phosphate buffer saline, simulated nasal fluid, and artificial cerebrospinal fluid. The cytotoxicity results with ~ 98 to 100% cell viability and no morphological changes through Giemsa staining indicated that nanoparticles were not leading to cell toxicity. The gamma scintigraphy studies showed higher uptake of the drug in the target site through the intranasal route and pharmacodynamic studies indicated that nanoparticles were able to inhibit the spatial memory impairment significantly as compared to the control group. The findings clearly indicated that the developed memantine nanoparticles could act as an alternative approach for the management of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Nanopartículas , Idoso , Humanos , Memantina/farmacologia , Memantina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Portadores de Fármacos/farmacologia , Encéfalo , Tamanho da Partícula
7.
Int J Pharm ; 618: 121683, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35314276

RESUMO

Parkinson's disease (PD) is triggered by the formation of free radicals in dopaminergic neurons, which results in oxidative stress-induced neurodegeneration. The objective of the work was to relieve oxidative stress by employing intranasal delivery of Bromocriptine Mesylate (BRM) and Glutathione (GSH) loaded nanoemulsion for the better management of PD. The depth of permeation of the nanoemulsion was assessed through confocal laser scanning microscopy (CLSM) which revealed higher nanoemulsion permeation in contrast to suspension. Biocompatibility of nanoemulsion was confirmed by nasal cilio toxicity study. The DPPH study showed that the nanoemulsion had significant antioxidant activity. Biochemical estimation studies in Wistar rats were carried out in order to determine the effect of nanoemulsion on oxidative stress. The levels of GSH, superoxide dismutase (SOD), and catalase (CAT) were significantly enhanced; and the level of thiobarbituric acid reactive substances (TBARS) was significantly reduced after the intranasal administration of nanoemulsion in the haloperidol-induced model of PD. Furthermore, the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were also determined which reduced significantly after the administration of nanoemulsion. The oxidative stress levels were lowered with nanoemulsion, showing the combined antioxidant capability of BRM and GSH. The neuroprotective effect of the prepared nanoemulsion was confirmed by histopathological studies. Pharmacokinetic study revealed a higher concentration of BRM and GSH in the brain of Wistar rats after intranasal administration of nanoemulsion with a higher Brain/Plasma ratio. A higher value of AUC(0-8) of nanoemulsion in the brain after intranasal administration revealed that BRM and GSH remained in the brain for a longer period due to sustained release from nanoemulsion. According to the findings, BRM and GSH loaded nanoemulsion has the potential to provide a combined and synergistic anti-oxidant effect for efficient management of PD.


Assuntos
Doença de Parkinson , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bromocriptina/farmacologia , Catalase/metabolismo , Emulsões/química , Glutationa/metabolismo , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia
8.
J Microencapsul ; 39(2): 95-109, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35147068

RESUMO

AIM: Baclofen and Lamotrigine via PLGA nanoparticles were developed for nose-to-brain delivery for the treatment of Neuropathic pain. METHODS: Nanoparticles were prepared using the modified nano-precipitation method. The prepared NPs were characterised and further in vitro and in vivo studies were performed. RESULTS: The Bcf-Ltg-PLGA-NPs were ∼177.7 nm with >75%(w/w) drugs encapsulated. In vitro dissolution studies suggested zero-order release profiles following the Korsmeyer-Peppas model. In vitro cytotoxicity and staining studies on mammalian cells showed dose dependant cytotoxicity where nanoparticles were significantly less toxic (>95% cell-viability). ELISA studies on RAW-macrophages showed Bcf-Ltg-PLGA-NPs as a potential pro-inflammatory-cytokines inhibitor. In vivo gamma-scintigraphy studies on rats showed intra-nasal administration of 99mTc-Bcf-Ltg-PLGA-NPs showed Cmax 3.6%/g at Tmax = 1.5h with DTE% as 191.23% and DTP% = 38.61% in brain. Pharmacodynamics evaluations on C57BL/6J mice showed a significant reduction in licks/bites during inflammation-induced phase II pain. CONCLUSION: The findings concluded that the combination of these drugs into a single nanoparticle-based formulation has potential for pain management.


Baclofen and Lamotrigine loaded PLGA nanoparticles were prepared with a size of 177.7nm, PDI 0.057 and Zeta Potential −15.8 mVIn vitro cell lines based studies showed dose dependant cytotoxicity and Bcf-Ltg-PLGA-NPs were found to be pro-inflammatory cytokines inhibitorsIn vivo Pharmacokinetic studies showed Cmax 3.6%/g at Tmax = 1.5 h with Drug Targeting Efficiency 191.23% and Drug Target Organ Transport 38.61% in the brain for prepared nanoparticlesIn vivo pharmacodynamics studies showed a significant reduction in licks/bites during inflammation-induced phase II pain.


Assuntos
Nanopartículas , Neuralgia , Animais , Baclofeno/uso terapêutico , Portadores de Fármacos/uso terapêutico , Lamotrigina/uso terapêutico , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos
9.
Drug Deliv Transl Res ; 12(7): 1556-1568, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34564827

RESUMO

Transdermal drug delivery is a viable and clinically proven route of administration. This route specifically requires overcoming the mechanical barrier provided by the Stratum Corneum of epidermis and vascular and nervous networks within the dermis. First-generation Transdermal patches and second-generation iontophoretic patches have been translated into commercial clinical products successfully. The current review reports different studies that aim to enhance the transdermal delivery of biopharmaceutical using microneedles and their effect on drug delivery. Microneedles (MN) are the micron-scale hybrid between transdermal patches and hypodermic syringes. Microneedles are tested and proven to show better delivery of the drugs, overcoming the drawbacks of hypodermic syringes. Multiple microneedles designs have been fabricated i.e. solid, coated, hollow, and polymer microneedles. Hollow microneedles are shorter in length but similar to hypodermic needles and have pore for infusion of liquid formulation of the drug. Solid microneedles a patch is applied after creating a hole in the skin; Drugs are coated on the surface of Coated microneedles; Polymer microneedles can be of different types like dissolving, non-dissolving or hydrogel-forming made up of polymers. Various advantages and limitations associated with the use of these techniques are discussed. Delivery of peptide and protein molecules with microneedles represents a significant opportunity for a better clinical outcome and hence value creation compared to standard injectable routes of administration. The advancement in various formulation and microfabrication techniques are currently being focused to aid the delivery of protein drugs via microneedles. The most recent advances and limitations in Microneedles -mediated protein and peptide delivery were discussed.


Assuntos
Agulhas , Pele , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis , Microinjeções/métodos , Peptídeos , Polímeros , Pele/metabolismo
10.
AAPS PharmSciTech ; 23(1): 25, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907501

RESUMO

Presently, most of the treatment strategies for cancer are focused on the surgical removal of cancerous tumors, along with physical and chemical treatment such as radiotherapy and chemotherapy, respectively. The primary issue associated with these methods is the inhibition of normal cell growth and serious side effects associated with systemic toxicity. The traditional chemotherapeutics which were delivered systemically were inadequate and had serious dose limiting side effects. Recent advances in the development of chemotherapeutics have simultaneously paved the way for efficient targeted drug delivery. Despite the advances in the field of oncogenic drugs, several limitations remain, such as early blood clearance, acquired resistance against cytotoxic agents, toxicity associated with chemotherapeutics, and site-specific drug delivery. Hence, this review article focuses on the recent scientific advancements made in different types of drug delivery systems, including, organic nanocarriers (polymers, albumins, liposomes, and micelles), inorganic nanocarriers (mesoporous silica nanoparticles, gold nanoparticles, platinum nanoparticles, and carbon nanotubes), aptamers, antibody-drug conjugates, and peptides. These targeted drug delivery approaches offer numerous advantages such as site-specific drug delivery, minimal toxicity, better bioavailability, and an increased overall efficacy of the chemotherapeutics. Graphical abstract.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Nanotubos de Carbono , Neoplasias , Antineoplásicos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Ouro , Humanos , Neoplasias/tratamento farmacológico , Platina/uso terapêutico
11.
Curr Pharm Des ; 27(45): 4513-4514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34844532
12.
Curr Pharm Des ; 27(45): 4530-4538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161206

RESUMO

Cancer is a global concern leading to millions of deaths every year. A declining trend in new drug discovery and development is becoming one of the major issues among the pharmaceutical, biotechnology industries and regulatory agencies. New drug development is proven to be a very lengthy and a costly process. Launch of a new drug takes 8-12 years and huge investments. Success rate in oncology therapeutics is also low due to toxicities at the pre-clinical and clinical trials level. Many oncological drugs get rejected at very promising stage showing adverse reactions on healthy cells. Thus, exploring new therapeutic benefits of the existing, shelved drugs for their anti-cancerous action could result in a therapeutic approach preventing the toxicities which occurs during clinical trials. Drug repurposing has the potential to overcome the challenges faced via conventional way of drug discovery and is becoming an area of interest for researchers and scientists. Although very few in vivo studies are conducted to prove the anti-cancerous activity of the drugs. Insufficient in vivo animal studies and lack of human clinical trials are the lacuna in the field of drug repurposing. This review focuses on the aspect of drug repurposing for cancer therapeutics. There are various studies which show that drugs approved for clinical indications other than cancer have shown promising anti-cancer activities. Some of the commonly used drugs like Benzodiazepines (Diazepam, Midzolam), Antidepressants (Imipramine, Clomipramine, and Citalopram), Antiepileptic (Valporic acid, Phenytoin), Anti diabetics (metformin) etc., have been reported to show potential activity against the cancerous cells.


Assuntos
Neoplasias , Animais , Antidepressivos/uso terapêutico , Descoberta de Drogas , Indústria Farmacêutica , Reposicionamento de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
13.
Polymers (Basel) ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158148

RESUMO

In the present study, midazolam (MDZ)-loaded chitosan nanoparticle formulation was investigated for enhanced transport to the brain through the intranasal (IN) route. These days, IN MDZ is very much in demand for treating life-threatening seizure emergencies; therefore, its nanoparticle formulation was formulated in the present work because it could substantially improve its brain targeting via the IN route. MDZ-loaded chitosan nanoparticles (MDZ-CSNPs) were formulated and optimized by the ionic gelation method and then evaluated for particle size, particle size distribution (PDI), drug loading (DL), encapsulation efficiency (EE), and in vitro release as well as in vitro permeation. The concentration of MDZ in the brain after the intranasal administration of MDZ-CSNPs (Cmax 423.41 ± 10.23 ng/mL, tmax 2 h, and area under the curve from 0 to 480 min (AUC0-480) of 1920.87 ng.min/mL) was found to be comparatively higher to that achieved following intravenous (IV) administration of MDZ solution (Cmax 245.44 ± 12.83 ng/mL, tmax 1 h, and AUC0-480 1208.94 ng.min/mL) and IN administration of MDZ solution (Cmax 211.67 ± 12.82, tmax 2 h, and AUC0-480 1036.78 ng.min/mL). The brain-blood ratio of MDZ-CSNPs (IN) were significantly greater at all sampling time points when compared to that of MDZ solution (IV) and MDZ (IN), which indicate that direct nose-to-brain delivery by bypassing the blood-brain barrier demonstrates superiority in brain delivery. The drug-targeting efficiency (DTE%) as well as nose-to-brain direct transport percentage (DTP%) of MDZ-CSNPs (IN) was found to be comparatively higher than that for other formulations, suggesting better brain targeting potential. Thus, the obtained results demonstrated that IN MDZ-CSNP has come up as a promising approach, which exhibits tremendous potential to mark a new landscape for the treatment of status epilepticus.

14.
Biofouling ; 36(6): 710-724, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32772715

RESUMO

Bacteriocins are small peptides that can inhibit the growth of a diverse range of microbes. There is a need to identify bacteriocins that are effective against biofilms of resistant clinical strains. The present study focussed on the efficacy of purified nisin like bacteriocin-GAM217 against extended spectrum ß-lactamase (ESBL) and metallo-beta-lactamase (MBL) producing clinical strains. Bacteriocin-GAM217 when combined with curcumin and cinnamaldehyde, synergistically enhanced antibacterial activity against planktonic and biofilm cultures of Staphylococcus epidermidis and Escherichia coli. Bacteriocin-GAM217 and phytochemical combinations inhibited biofilm formation by >80%, and disrupted the biofilm for selected ESBL and MBL producing clinical strains. The anti-adhesion assay showed that these combinatorial compounds significantly lowered the attachment of bacteria to Vero cells and that they elicited membrane permeability and rapid killing as viewed by confocal microscopy. This study demonstrates that bacteriocin-GAM217 in combination with phytochemicals can be a potential anti-biofilm agent and thus has potential for biomedical applications.


Assuntos
Antibacterianos , Bacteriocinas , Biofilmes , Curcumina , Nisina , Acroleína/análogos & derivados , Animais , Antibacterianos/farmacologia , Chlorocebus aethiops , Curcumina/farmacologia , Testes de Sensibilidade Microbiana , Nisina/farmacologia , Células Vero , beta-Lactamases
15.
Drug Deliv Transl Res ; 10(6): 1862-1875, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32297166

RESUMO

Alzheimer disease (AD) is very common among the older people. There are few medications available as oral and suspension dosage forms for the management of AD. Due to the rising cases of AD and the associated risks of the existing line of treatment, oil in water (o/w) nanoemulsion (NE) loaded with donepezil was prepared to explore intranasal route of administration. The NE was prepared using labrasol (10%), cetyl pyridinium chloride (1% in 80% water), and glycerol (10%), with a drug concentration of 1 mg/ml. The developed NE was characterized for particle size, polydispersity index (PDI), and zeta potential. In vitro release studies were conducted to observe the release of drug. Further in vivo studies of developed NE were done on Sprague Dawley rats using technetium pertechnetate (99mTc) labeled formulations to investigate the nose to brain drug delivery pathway. The nanoemulsion showed particle size of 65.36 nm with a PDI of 0.084 and zeta potential of -10.7 mV. In vitro release studies showed maximum release of 99.22% in 4 h in phosphate-buffered saline, 98% in 2 h in artificial cerebrospinal fluid, and 96% in 2 h in simulated nasal fluid. The cytotoxicity and antioxidant activity of the NE showed dose-dependent cytotoxicity and % radical scavenging activity (%RSA). The images of giemsa staining also confirmed that the developed formulation has no impact on the morphology of cells. Scintigrams showed maximum uptake of NE in the brain. The findings suggested that the developed NE loaded with donepezil hydrochloride could serve as a new approach for the treatment of Alzheimer via nose to brain drug delivery. Graphical abstract.


Assuntos
Doença de Alzheimer , Donepezila , Nanopartículas , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Animais , Encéfalo/diagnóstico por imagem , Donepezila/uso terapêutico , Emulsões , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
16.
J Microencapsul ; 37(5): 355-365, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32293915

RESUMO

Aim: A nanoemulsion loaded with memantine for intranasal delivery to bypass the blood-brain barrier for the treatment of Alzheimer disease.Method: The nanoemulsion was prepared using homogenisation and ultrasonication methods. The developed nanoemulsion was characterised, in vitro release and antioxidant potential was analysed. The in vivo studies were carried out by radiolabelling the memantine with technetium pertechnetate.Results: The finalised NE showed particle-size of ∼11 nm and percentage transmittance of ∼99%. The in vitro release studies showed 80% drug release in simulated nasal fluid. The nanoemulsion showed 98% cell viability and antioxidative assays confirmed that the encapsulation of memantine in a nanoemulsion sustained its antioxidative potential. Gamma images and biodistribution results also confirmed higher uptake of formulation with %radioactivity of 3.6 ± 0.18%/g at 1.5 h in brains of rats administered intranasally.Conclusion: The developed nanoemulsion could be used as a potential carrier of memantine for a direct nose to brain delivery.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Memantina/administração & dosagem , Nanopartículas/química , Animais , Antioxidantes , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Portadores de Fármacos , Emulsões/química , Feminino , Raios gama , Masculino , Nanotecnologia , Ratos , Ratos Sprague-Dawley
17.
Curr Pharm Des ; 26(19): 2247-2256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32091327

RESUMO

Neuropsychological disorders are now growing rapidly worldwide among the people of diverse backgrounds irrespective of age, gender, and geographical region. Such disorders not only disturb the normal life and functionality of an individual but also impact the social relationships of the patient and the people associated with them, and if not treated in time, it may also result in mortality in severe conditions. Various antipsychotic drugs have been developed but their use is often limited by issues related to effective drug delivery at the site of action i.e. brain, mainly because of the blood-brain barrier. To resolve these issues, researchers and scientists have been working to develop a more effective drug delivery system where drugs can cross the blood-brain barrier and reach the brain in more effective concentrations. Drugs have been modified and formulated into nano-carriers and experimental studies for efficient and targeted delivery of drugs have been conducted. This review focuses on certain common neuropsychological diseases and their nanocarriers developed for drug delivery in the brain and are discussed with a brief description of various experimental in vitro and in vivo studies. This review also focuses on the intranasal route for the delivery of antipsychotic drugs and constraints faced due to the blood-brain barrier by the drugs.


Assuntos
Nanopartículas , Administração Intranasal , Barreira Hematoencefálica , Encéfalo , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos
18.
Adv Pharm Bull ; 9(3): 401-408, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31592118

RESUMO

Purpose: Nanoemulsions (NEs) of polyphenon 60 (P60) and cranberry (NE I) and P60 and curcumin (NE II) were prepared with the aim to enhance anti-bacterial potential and to understand the mechanism of anti-bacterial action of the encapsulated compounds. Methods: To evaluate the antibacterial potential of the developed NE, microtiter biofilm formation assay was performed. The cytotoxicity analysis was done to assess the toxicity profile of the NEs. Further antibacterial analysis against uropathogenic strains was performed to check the developed NEs were effective against these strains. Results: In microtiter dish biofilm formation assay, both NE formulations inhibited the growth more effectively (Av. % inhibition ~84%) as compared to corresponding aqueous solution (Av. % inhibition ~64%) and placebo (Av. % inhibition ~59%) at their respective minimum inhibitory concentration (MIC) values. Cytotoxicity analysis using 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT assay) showed that the formulations were nontoxic to Vero cells. The antibacterial studies against uropathogenic resistant strains also showed that NEs effectively inhibited the growth of bacterial strains. Conclusion: From different studies it was concluded that both the NE's were able to inhibit bacterial strains and could be further used for the treatment of urinary tract infection (UTI). The antibacterial activity of developed NEs showed that these could be used as alternative therapies for the treatment of UTI.

19.
Drug Deliv Transl Res ; 9(5): 879-890, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30887226

RESUMO

Direct nose-to-brain delivery of drugs and faster onset of action have made intra-nasal route a much sought-after alternative to conventional routes of drug delivery to the brain. Lamotrigine is used for the treatment and management of neuropathic pain, and in the present work, lamotrigine (LTG)-PLGA nanoparticles were developed for intra-nasal delivery. The LTG-PLGA nanoparticles were prepared using modified nanoprecipitation method via high-speed homogenization and ultra-sonication techniques. Entrapment efficiency (EE%) of developed LTG-PLGA-NPs was found to be 84.87 ± 1.2% with drug loading of 10.21 ± 0.89%. The particle size of developed nanoparticles was found to be 184.6 nm with PDI value of 0.082 and zeta potential of - 18.8 mV. Dissolution profiles were studied in PBS (pH 7.4), simulated nasal fluid, and simulated cerebrospinal fluid where almost complete release was observed within 5 h in CSF. In vitro, cytotoxicity was analyzed using MTT assay where dose-dependent cytotoxicity was observed for developed LTG-PLGA-NPs. In vitro cytokine analysis showed positive effects of LTG-PLGA-NPs as pro-inflammatory cytokine suppressors. Further, in vivo studies were performed for radiolabeled formulation and drug (99mTc-LTG-PLGA-NPs and 99mTc-LTG-aqueous) using Sprague Dawley rats where with the help of gamma scintigraphy studies, various routes of administration viz. oral, intra-nasal, and intra-venous were compared. Various pharmacokinetic parameters were evaluated using biodistribution studies to estimate the drug levels in blood and brain. For 99mTc-LTG-PLGA-NPs via intra-nasal route, drug targeting efficiency (DTE%) was found to be 129.81% and drug target organ transport (DTP%) to be 22.81% in brain with Cmax of 3.82%/g within Tmax 1.5 h. Thus, the developed PLGA nanoparticles for intra-nasal delivery provide a possible alternative for existing available drug formulation for neuropathic pain management.


Assuntos
Anticonvulsivantes/administração & dosagem , Encéfalo/metabolismo , Portadores de Fármacos/administração & dosagem , Lamotrigina/administração & dosagem , Nanopartículas/administração & dosagem , Mucosa Nasal/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Administração Intranasal , Animais , Anticonvulsivantes/farmacocinética , Linhagem Celular Tumoral , Citocinas/metabolismo , Portadores de Fármacos/farmacocinética , Lamotrigina/farmacocinética , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Células RAW 264.7 , Ratos Sprague-Dawley
20.
Rejuvenation Res ; 22(3): 235-245, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30175946

RESUMO

In this work, poly (D,L-lactide-co-glycolic acid) (PLGA) nanoparticles of baclofen (Bcf-PLGA-NPs) were developed and optimized using nanoprecipitation method. The average particle size of the Bcf-PLGA-NP was found to be 124.8 nm, polydispersity index of 0.225, and zeta potential was found to be in the range of -20.4 mV. In vitro dissolution studies showed that Bcf was released from PLGA NPs in a sustained manner from 50% release in 2.5 hours to 80%-85% in 24 hours. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on Neuro-2a neuroblastoma cell line showed comparably low cytotoxicity of Bcf-PLGA-NPs as compared with aqueous solution of Bcf at reported Cmax values of the drug. To explore the nose-to-brain pathway, in vivo studies were carried out in Sprague-Dawley rats by radiolabeling of Bcf with technetium-99m (99mTc). Gamma scintigraphy images of the rats that were administered through intranasal (i.n.) route showed the maximum uptake of radiolabeled NPs from nose to brain at 3 hours as compared with the rats administered with NPs intravenously and orally. To assess the Bcf concentration in brain and blood, biodistribution studies were performed and following i.n. route the NPs were dispersed in brain (3.5%/g) and blood (3%/g) at 3 hours, and these observations were in agreement with the gamma scintigrams. Hence, from the results it was suggested that the developed PLGA NPs could serve as a potential carrier for the Bcf in the treatment of neuropathic pain.


Assuntos
Baclofeno/uso terapêutico , Nanopartículas/química , Neuralgia/tratamento farmacológico , Manejo da Dor , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Baclofeno/administração & dosagem , Baclofeno/farmacocinética , Baclofeno/farmacologia , Encéfalo/diagnóstico por imagem , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Camundongos , Tamanho da Partícula , Ratos Sprague-Dawley , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...