Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 8(1): 32, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169121

RESUMO

Charcot-Marie-Tooth disease (CMT) is a group of inherited neurological disorders of the peripheral nervous system. CMT is subdivided into two main types: a demyelinating form, known as CMT1, and an axonal form, known as CMT2. Nearly 30 genes have been identified as a cause of CMT2. One of these is the 'dehydrogenase E1 and transketolase domain containing 1' (DHTKD1) gene. We previously demonstrated that a nonsense mutation [c.1455 T > G (p.Y485*)] in exon 8 of DHTKD1 is one of the disease-causing mutations in CMT2Q (MIM 615025). The aim of the current study was to investigate whether human disease-causing mutations in the Dhtkd1 gene cause CMT2Q phenotypes in a mouse model in order to investigate the physiological function and pathogenic mechanisms associated with mutations in the Dhtkd1 gene in vivo. Therefore, we generated a knock-in mouse model with the Dhtkd1Y486* point mutation. We observed that the Dhtkd1 expression level in sciatic nerve of knock-in mice was significantly lower than in wild-type mice. Moreover, a histopathological phenotype was observed, reminiscent of a peripheral neuropathy, including reduced large axon diameter and abnormal myelination in peripheral nerves. The knock-in mice also displayed clear sensory defects, while no abnormalities in the motor performance were observed. In addition, accumulation of mitochondria and an elevated energy metabolic state was observed in the knock-in mice. Taken together, our study indicates that the Dhtkd1Y486* knock-in mice partially recapitulate the clinical phenotypes of CMT2Q patients and we hypothesize that there might be a compensatory effect from the elevated metabolic state in the knock-in mice that enables them to maintain their normal locomotor function.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Complexo Cetoglutarato Desidrogenase/genética , Camundongos , Mitocôndrias/patologia , Nervo Isquiático/metabolismo , Distúrbios Somatossensoriais/genética , Animais , Axônios/patologia , Axônios/ultraestrutura , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Códon sem Sentido , Metabolismo Energético , Técnicas de Introdução de Genes , Complexo Cetoglutarato Desidrogenase/metabolismo , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Mitocôndrias Musculares/ultraestrutura , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Condução Nervosa , Degradação do RNAm Mediada por Códon sem Sentido/genética , Nervos Periféricos/patologia , Nervos Periféricos/ultraestrutura , Fenótipo , Mutação Puntual , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Distúrbios Somatossensoriais/patologia , Distúrbios Somatossensoriais/fisiopatologia
2.
World J Gastroenterol ; 20(2): 498-508, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24574718

RESUMO

AIM: To generate a Gpr128 gene knockout mouse model and to investigate its phenotypes and the biological function of the Gpr128 gene. METHODS: Bacterial artificial chromosome-retrieval methods were used for constructing the targeting vector. Using homologous recombination and microinjection technology, a Gpr128 knockout mouse model on a mixed 129/BL6 background was generated. The mice were genotyped by polymerase chain reaction (PCR) analysis of tail DNA and fed a standard laboratory chow diet. Animals of both sexes were used, and the phenotypes were assessed by histological, biochemical, molecular and physiological analyses. Semi-quantitative reverse transcription-PCR and Northern blotting were used to determine the tissue distribution of Gpr128 mRNA. Beginning at the age of 4 wk, body weights were recorded every 4 wk. Food, feces, blood and organ samples were collected to analyze food consumption, fecal quantity, organ weight and constituents of the blood and plasma. A Trendelenburg preparation was utilized to examine intestinal motility in wild-type (WT) and Gpr128(-/-) mice at the age of 8 and 32 wk. RESULTS: Gpr128 mRNA was highly and exclusively detected in the intestinal tissues. Targeted deletion of Gpr128 in adult mice resulted in reduced body weight gain, and mutant mice exhibited an increased frequency of peristaltic contraction and slow wave potential of the small intestine. The Gpr128(+/+) mice gained more weight on average than the Gpr128(-/-) mice since 24 wk, being 30.81 ± 2.84 g and 25.74 ± 4.50 g, respectively (n = 10, P < 0.01). The frequency of small intestinal peristaltic contraction was increased in Gpr128(-/-) mice. At the age of 8 wk, the frequency of peristalsis with an intraluminal pressure of 3 cmH2O was 6.6 ± 2.3 peristalsis/15 min in Gpr128(-/-) intestine (n = 5) vs 2.6 ± 1.7 peristalsis/15 min in WT intestine (n = 5, P < 0.05). At the age of 32 wk, the frequency of peristaltic contraction with an intraluminal pressure of 2 and 3 cmH2O was 4.6 ± 2.3 and 3.1 ± 0.8 peristalsis/15 min in WT mice (n = 8), whereas in Gpr128(-/-) mice (n = 8) the frequency of contraction was 8.3 ± 3.0 and 7.4 ± 3.1 peristalsis/15 min, respectively (2 cmH2O: P < 0.05 vs WT; 3 cmH2O: P < 0.01 vs WT). The frequency of slow wave potential in Gpr128(-/-) intestine (35.8 ± 4.3, 36.4 ± 4.2 and 37.1 ± 4.8/min with an intraluminal pressure of 1, 2 and 3 cmH2O, n = 8) was also higher than in WT intestine (30.6 ± 4.2, 31.4 ± 3.9 and 31.9 ± 4.5/min, n = 8, P < 0.05). CONCLUSION: We have generated a mouse model with a targeted deletion of Gpr128 and found reduced body weight and increased intestinal contraction frequency in this animal model.


Assuntos
Deleção de Genes , Jejuno/metabolismo , Contração Muscular/genética , Peristaltismo/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Redução de Peso/genética , Fatores Etários , Animais , Feminino , Regulação da Expressão Gênica , Genótipo , Jejuno/fisiopatologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Pressão , RNA Mensageiro/metabolismo
3.
PLoS One ; 8(7): e68497, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844209

RESUMO

Adipokine adiponectin (APN) has been recently reported to play a role in regulating bone mineral density (BMD). To explore the mechanism by which APN affects BMD, we investigated BMD and biomechanical strength properties of the femur and vertebra in sham-operated (Sham) and ovariectomized (OVX) APN knockout (KO) mice as compared to their operated wild-type (WT) littermates. The results show that APN deficiency has no effect on BMD but induces increased ALP activity and osteoclast cell number. While OVX indeed leads to significant bone loss in both femora and vertebras of WT mice with comparable osteogenic activity and a significant increase in osteoclast cell number when compared to that of sham control. However, no differences in BMD, ALP activity and osteoclast cell number were found between Sham and OVX mice deficient for APN. Further studies using bone marrow derived mesenchymal stem cells (MSCs) demonstrate an enhanced osteogenic differentiation and extracellular matrix calcification in APN KO mice. The possible mechanism for APN deletion induced acceleration of osteogenesis could involve increased proliferation of MSCs and higher expression of Runx2 and Osterix genes. These findings indicate that APN deficiency can protect against OVX-induced osteoporosis in mice, suggesting a potential role of APN in regulating the balance of bone formation and bone resorption, especially in the development of post-menopausal osteoporosis.


Assuntos
Adiponectina/deficiência , Densidade Óssea/fisiologia , Osteoporose/fisiopatologia , Ovariectomia , Absorciometria de Fóton , Adiponectina/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Densidade Óssea/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Cálcio/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(16): 6459-64, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23553835

RESUMO

Retinoic acid inducible gene I (RIG-I) senses viral RNAs and triggers innate antiviral responses through induction of type I IFNs and inflammatory cytokines. However, whether RIG-I interacts with host cellular RNA remains undetermined. Here we report that Rig-I interacts with multiple cellular mRNAs, especially Nf-κb1. Rig-I is required for NF-κB activity via regulating Nf-κb1 expression at posttranscriptional levels. It interacts with the multiple binding sites within 3'-UTR of Nf-κb1 mRNA. Further analyses reveal that three distinct tandem motifs enriched in the 3'-UTR fragments can be recognized by Rig-I. The 3'-UTR binding with Rig-I plays a critical role in normal translation of Nf-κb1 by recruiting the ribosomal proteins [ribosomal protein L13 (Rpl13) and Rpl8] and rRNAs (18S and 28S). Down-regulation of Rig-I or Rpl13 significantly reduces Nf-κb1 and 3'-UTR-mediated luciferase expression levels. These findings indicate that Rig-I functions as a positive regulator for NF-κB signaling and is involved in multiple biological processes in addition to host antivirus immunity.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica/fisiologia , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Northern Blotting , Western Blotting , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Imunofluorescência , Imunoprecipitação , Luciferases , Camundongos , Camundongos Knockout , Análise em Microsséries , Simulação de Dinâmica Molecular , NF-kappa B/genética , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/metabolismo
5.
Sheng Wu Gong Cheng Xue Bao ; 21(1): 159-62, 2005 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-15859348

RESUMO

To generate transgenic mice in which both hygromycin (hyg) and neomycin (neo) resistance genes are expressed in murine fibroblast cells (MEFs), which are required for conditional gene knock-out and screening of drug resistant ES cell clones. To construct HygR-neoR expression vector, pTK-hygR-pA and PGK-neoR-pA were cloned into pBluescript vector. DNA fragments of tandem genes ( 4245bp ) were prepared by Kpn I and Xba I digestion and transgene was microinjected into pronucleus of zygotes to generate transgenic mice. Transgenic mice were identified by PCR and Southern blot; expression of hygR and neoR gene transcripts were detected by RT-PCR. 7 founder mice carrying hyg-neo resistant genes were obtained and 6 transgenic mouse lines were successfully established. The hygR and neoR gene transcripts were detected in the liver and/or ovary of transgenic mice from hn30, hn33, hn66 and hn67 mouse lines. In MEFs isolated from the mice of line hn66 and hn30, expression of hyg and neo resistant genes was also detectable. Transgenic mouse lines expressing two anti-drug genes have been established. The hyg and neo resistant gene transcripts were detected in the MEFs of two transgenic mouse lines.


Assuntos
Cinamatos/farmacologia , Resistência a Múltiplos Medicamentos/genética , Higromicina B/análogos & derivados , Neomicina/farmacologia , Animais , Fibroblastos/metabolismo , Higromicina B/farmacologia , Camundongos , Camundongos Transgênicos , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...