Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Biol ; 61(1): 135-143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36617895

RESUMO

CONTEXT: Alkaloid-enriched extract of Huperzia serrata (Thunb.) Trevis (Lycopodiaceae) (HsAE) can potentially be used to manage neuronal disorders. OBJECTIVE: This study determines the anti-neuroinflammatory effects of HsAE on lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and the underlying mechanisms. MATERIALS AND METHODS: BV-2 cells were pre- or post-treated with different concentrations of HsAE (25-150 µg/mL) for 30 min before or after LPS induction. Cell viability was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and no cytotoxicity was found. Nitric oxide (NO) concentration was determined using Griess reagent. The levels of prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 were determined using enzyme-linked immunosorbent assay. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 and the phosphorylation of mitogen-activated protein kinase (MAPK) were analyzed using western blotting. RESULTS: HsAE reduced LPS-induced NO production with half-maximal inhibitory concentration values of 99.79 and 92.40 µg/mL at pre- and post-treatment, respectively. Pre-treatment with HsAE at concentrations of 50, 100, and 150 µg/mL completely inhibited the secretion of PGE2, TNF-α, IL-6, and IL-1ß compared to post-treatment with HsAE. This suggests that prophylactic treatment is better than post-inflammation treatment. HsAE decreased the expression levels of iNOS and COX-2 and attenuated the secretion of pro-inflammatory factors by downregulating the phosphorylation of p38 and extracellular signal-regulated protein kinase in the MAPK signaling pathway. DISCUSSION AND CONCLUSIONS: HsAE exerts anti-neuroinflammatory effects on LPS-stimulated BV-2 cells, suggesting that it may be a potential candidate for the treatment of neuroinflammation in neurodegenerative diseases.


Assuntos
Alcaloides , Huperzia , Lipopolissacarídeos/farmacologia , Huperzia/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Dinoprostona/metabolismo , Microglia , Fator de Necrose Tumoral alfa/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Alcaloides/farmacologia , Alcaloides/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
2.
Phytother Res ; 37(1): 140-150, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36065796

RESUMO

Huperzia serrata contains Huperzine A (HupA)-an alkaloid used to treat cognitive dysfunction. In this study, we used the total alkaloids (HsAE) to investigate their potential in managing cognitive impairment in comparison with HupA. The antioxidant activity was measured by DPPH assay. In the cellular study, the cell viability and level of ACh of SH-SY5Y cells were evaluated after pretreated with HsAE and scopolamine. For in vivo assay, mice were pre-treated with HsAE, and HupA and undergone scopolamine injection for cognitive impairment. The behavioral tests including the Y-maze and Morris water maze test and the AChE activity, the SOD, CAT, MDA level in the hippocampus and cortex were evaluated. HsAE showed significant scavenging properties on DPPH radicals. HsAE was not toxic to SH-SY5Y cells, and can rescue these cells upon scopolamine treatment. Intriguingly, HsAE showed the neuroprotection against scopolamine-induced amnesia in mice. Moreover, HsAE decreased AChE activity, MDA level, increased antioxidative enzyme activity in the hippocampus as well as cortex of mice, which was relatively better than that of HupA. These findings suggested that HsAE may significantly protect the neurons of mice with scopolamine-induced memory impairment connected to AChE depletion and oxidative stress.


Assuntos
Alcaloides , Huperzia , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Camundongos , Animais , Escopolamina , Fármacos Neuroprotetores/farmacologia , Huperzia/química , Huperzia/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Antioxidantes/farmacologia , Estresse Oxidativo , Acetilcolinesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...