Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(4): 124, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36872377

RESUMO

The objective of the study was to determine the efficacy of ultrasound-treatment Saccharomyces cerevisiae and spray drying in preserving the viability of Lactiplantibacillus plantarum. The combination of ultrasound-treated S. cerevisiae and L. plantarum was evaluated. Next, the mixture was blended with maltodextrin and either Stevia rebaudiana-extracted fluid, prior to undergoing spray drying. The L. plantarum viability was assessed after the spray drying process, during storage, and in simulated digestive fluid (SDF) conditions. The results showed that the impact of ultrasound caused the crack and holes in the yeast cell wall. Besides, the moisture content values were not significantly different in all samples after spray drying. Although the amount of powder recovery in stevia-supplemented samples was not higher than that of the control sample, the L. plantarum viability was significantly improved after the spray drying process. The density of L. plantarum tended to be stable during the first 30 days of storage and decreased more rapidly after that. The results reveal that there was no statistically significant difference in the trend of the samples before and after storage. In the SDF test, the L. plantarum viability mixing with ultrasound-treated yeast cells in the spray drying samples was significantly improved. Besides, the presence of Stevia showed positive efficiency on the L. plantarum viability. The L. plantarum viability mixing with ultrasound-treated yeast cells and stevia-extracted fluid by spray drying process showed potential application due to making powder form which helped to improve the L. plantarum stability during the storage time.


Assuntos
Probióticos , Saccharomyces cerevisiae , Pós , Secagem por Atomização , Suplementos Nutricionais
2.
Artigo em Inglês | MEDLINE | ID: mdl-34208212

RESUMO

As a response to the coronavirus disease 2019 (COVID-19) pandemic, Vietnam enforced strict quarantine, contact tracing and physical distancing policies resulting in one of the lowest numbers of individuals infected with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) globally. This study aimed to determine the prevalence of SARS-CoV-2 antibody positivity among high-risk populations in Vietnam. A prevalence survey was undertaken within four communities in Vietnam, where at least two COVID-19 cases had been confirmed. Participants were classified according to the location of exposure: household contacts, close contacts, community members, and healthcare workers (HCWs) responsible for treating COVID-19 cases. Participants completed a baseline questionnaire and SARS-CoV-2 IgG antibodies were quantified using a commercial assay. A total of 3049 community members and 149 health care workers consented to the study. Among 13 individuals who were seropositive (0.4%), five household contacts (5/27, 18.5%), one close contact (1/53, 1.9%), and seven community members (7/2954, 0.2%) had detectable SARS-CoV-2 antibodies. All HCWs were negative for SARS-CoV-2 antibodies. Participants were tested a median of 15.1 (interquartile range from 14.9 to 15.2) weeks after exposure. Our study found a low prevalence of SARS-CoV-2 antibodies in high-risk communities and healthcare workers in communities in Vietnam with known COVID-19 cases.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Pessoal de Saúde , Humanos , Pandemias , Prevalência , Estudos Soroepidemiológicos , Vietnã/epidemiologia
3.
Infect Drug Resist ; 13: 4061-4068, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204123

RESUMO

INTRODUCTION: Dengue hemorrhagic fever is caused by four serotypes of dengue viruses transmitted by mosquitoes. In Vietnam, dengue outbreaks occur every year, and all four serotypes have been found circulating with the dominant one varying over time. However, in 2017 an unusual dengue fever outbreak occurred in the North of Vietnam, predominantly caused by DENV1 (92%) and DENV2 (7.3%). The objective of the present study was to obtain and characterize the full-length genome sequence of seven DENV2 strains in 2017 epidemic. MATERIALS AND METHODS: Whole-genome sequencing of seven DENV2 isolates from the 2017 outbreak were obtained using the Illumina MiSeq next generation sequencer system. Complete genome sequences were then analyzed to find out genetic variants and genetic relationships between these DENV2 with other strains that circulated in Vietnam previously and other regions of the world. RESULTS: The complete genome sequence of seven DENV2 isolates in the 2017 dengue outbreak comprised 10,696 nucleotides with an open reading frame coding for 3392 amino acids. The genome analysis showed only a small number of amino acid changes which were obtained in all genes, in which a few amino acids substitutions were distributed over the positions such as G156 (NS1), V106 (NS2A), and L258/T260 (NS5). The phylogenetic analysis revealed that the DENV2 isolates in the 2017 outbreak were most closely related to the dengue virus from India in 2006, suggesting that the causative virus originated from the DENV2 that caused dengue hemorrhagic fever in 2006 in India. CONCLUSION: The first complete genome sequences of seven DENV2 isolates in the 2017 dengue outbreak in Northern Vietnam were successfully obtained. The genetic and phylogenetic data indicated that these DENV2 isolates were not causative virus circulating in Vietnam previously but originated from India in 2006. These data are emerging and providing valuable information for the management and surveillance of dengue in Vietnam.

4.
Virol J ; 17(1): 7, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959201

RESUMO

BACKGROUND: Dengue hemorrhagic fever is an acute viral infection transmitted by mosquitoes. In the 2017, a dengue epidemic occurred in Hanoi in a short time interval and many cases were serious with associated mortality. This was the largest and unusual dengue fever outbreak in the North of Vietnam over the past 20 years. The objective of the present study was to understand the genetic characteristics of the DENV-1 strain in the 2017 epidemic and its relationship with previous viruses in Vietnam and the rest of the world. METHODS: Complete genomes of 72 DENV-1 from patients in the 2017 epidemic were sequenced using NGS. The full genome sequences were then analyzed to find out the genetic variants in the groups of 72 strains, followed by their comparison with other strains that caused disease in Vietnam previously and several other regions of the world, revealing a genetic relationship between them. RESULTS: The complete genome sequence of 72 DENV-1 strains comprised 10,697 nucleotides with an open reading frame coding for 3392 amino acids. The genomic analysis revealed different amino acid substitutions in all genes, especially varying at position S75 (Capsid), M125 (PrM), D54 (E), T147, V180 (NS1), G45, Y126, I154 (NS2A), A94 (NS2B), M298 (NS3), K47, V68 (NS4A), I29 (NS4B), and R166, E536, G614, T821 (NS5). The genetic analysis suggested that the viruses were most closely related to the causative virus of the dengue outbreak in Vietnam and Cambodia from 2006 to 2008. These results indicated that DENV-1 from the dengue epidemic 2017 in Northern Vietnam originated from the virus that caused the dengue outbreak during the 2007 to 2008 period in Vietnam. CONCLUSION: The present study is the first of its kind to describe complete genome sequence as well as genetic variants and phylogenetic analysis of DENV-1 associated with the unusual dengue epidemic of 2017 in northern Vietnam. These results provide detailed evidence to elucidate the origin, circulation, and genetic evolution of DENV in Vietnam.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Surtos de Doenças , Variação Genética , Genoma Viral , Humanos , Filogenia , RNA Viral/genética , Vietnã/epidemiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA