Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 373(7): 560-70, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12185568

RESUMO

Several surface analytical techniques, including electron spectroscopy for chemical analysis (ESCA)(X-ray photoelectron spectroscopy) and sputtered neutral mass spectrometry (SNMS), were used to study the interaction between Hg and other components of fluorescent lamps, a very critical issue in lighting industries. Active sites, responsible for Hg interaction/deposition, can be successfully identified by comparing the x- y distribution (obtained by ESCA mapping) and depth distribution (available through SNMS) of respective lamp components with that of Hg. A correlation in both depth and x- y distribution is strong evidence of site preference for Hg interaction/deposition. A burial mechanism is, however, proposed when only depth distribution, not x- y, is correlated. Other modes of ESCA (high resolution, angle-resolved, etc.) were also helpful. Information about the valence states of the interacted Hg species would help to define the nature of the interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...