Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cogn Neurodyn ; 15(3): 369-388, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34040666

RESUMO

Electroencephalogram (EEG) signals acquired from brain can provide an effective representation of the human's physiological and pathological states. Up to now, much work has been conducted to study and analyze the EEG signals, aiming at spying the current states or the evolution characteristics of the complex brain system. Considering the complex interactions between different structural and functional brain regions, brain network has received a lot of attention and has made great progress in brain mechanism research. In addition, characterized by autonomous, multi-layer and diversified feature extraction, deep learning has provided an effective and feasible solution for solving complex classification problems in many fields, including brain state research. Both of them show strong ability in EEG signal analysis, but the combination of these two theories to solve the difficult classification problems based on EEG signals is still in its infancy. We here review the application of these two theories in EEG signal research, mainly involving brain-computer interface, neurological disorders and cognitive analysis. Furthermore, we also develop a framework combining recurrence plots and convolutional neural network to achieve fatigue driving recognition. The results demonstrate that complex networks and deep learning can effectively implement functional complementarity for better feature extraction and classification, especially in EEG signal analysis.

2.
IEEE J Biomed Health Inform ; 25(8): 2887-2894, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33591923

RESUMO

Electroencephalography (EEG) decoding is an important part of Visual Evoked Potentials-based Brain-Computer Interfaces (BCIs), which directly determines the performance of BCIs. However, long-time attention to repetitive visual stimuli could cause physical and psychological fatigue, resulting in weaker reliable response and stronger noise interference, which exacerbates the difficulty of Visual Evoked Potentials EEG decoding. In this state, subjects' attention could not be concentrated enough and the frequency response of their brains becomes less reliable. To solve these problems, we propose an attention-based parallel multiscale convolutional neural network (AMS-CNN). Specifically, the AMS-CNN first extract robust temporal representations via two parallel convolutional layers with small and large temporal filters respectively. Then, we employ two sequential convolution blocks for spatial fusion and temporal fusion to extract advanced feature representations. Further, we use attention mechanism to weight the features at different moments according to the output-related interest. Finally, we employ a full connected layer with softmax activation function for classification. Two fatigue datasets collected from our lab are implemented to validate the superior classification performance of the proposed method compared to the state-of-the-art methods. Analysis reveals the competitiveness of multiscale convolution and attention mechanism. These results suggest that the proposed framework is a promising solution to improving the decoding performance of Visual Evoked Potential BCIs.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Algoritmos , Encéfalo , Eletroencefalografia , Humanos , Redes Neurais de Computação
3.
IEEE J Biomed Health Inform ; 25(3): 693-700, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32750954

RESUMO

Fatigue driving has attracted a great deal of attention for its huge influence on automobile accidents. Recognizing driving fatigue provides a primary but significant way for addressing this problem. In this paper, we first conduct the simulated driving experiments to acquire the EEG signals in alert and fatigue states. Then, for multi-channel EEG signals without pre-processing, a novel rhythm-dependent multilayer brain network (RDMB network) is developed and analyzed for driving fatigue detection. We find that there exists a significant difference between alert and fatigue states from the view of network science. Further, key sub-RDMB network based on closeness centrality are extracted. We calculate six network measures from the key sub-RDMB network and construct feature vectors to classify the alert and fatigue states. The results show that our method can respectively achieve the average accuracy of 95.28% (with sample length of 5 s), 90.25% (2 s), and 87.69% (1 s), significantly higher than compared methods. All these validate the effectiveness of RDMB network for reliable driving fatigue detection via EEG.


Assuntos
Condução de Veículo , Eletroencefalografia , Atenção , Encéfalo , Humanos
4.
Int J Neural Syst ; 29(5): 1850057, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30776986

RESUMO

Driver fatigue is an important contributor to road accidents, and driver fatigue detection has attracted a great deal of attention on account of its significant importance. Numerous methods have been proposed to fulfill this challenging task, though, the characterization of the fatigue mechanism still, to a large extent, remains to be investigated. To address this problem, we, in this work, develop a novel Multiplex Limited Penetrable Horizontal Visibility Graph (Multiplex LPHVG) method, which allows in not only detecting fatigue driving but also probing into the brain fatigue behavior. Importantly, we use the method to construct brain networks from EEG signals recorded from different subjects performing simulated driving tasks under alert and fatigue driving states. We then employ clustering coefficient, global efficiency and characteristic path length to characterize the topological structure of the networks generated from different brain states. In addition, we combine average edge overlap with the network measures to distinguish alert and mental fatigue states. The high-accurate classification results clearly demonstrate and validate the efficacy of our multiplex LPHVG method for the fatigue detection from EEG signals. Furthermore, our findings show a significant increase of the clustering coefficient as the brain evolves from alert state to mental fatigue state, which yields novel insights into the brain behavior associated with fatigue driving.


Assuntos
Condução de Veículo/psicologia , Eletroencefalografia/métodos , Fadiga Mental/diagnóstico , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Redes Neurais de Computação , Sensibilidade e Especificidade , Adulto Jovem
5.
IEEE Trans Neural Netw Learn Syst ; 30(9): 2755-2763, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30640634

RESUMO

Driver fatigue evaluation is of great importance for traffic safety and many intricate factors would exacerbate the difficulty. In this paper, based on the spatial-temporal structure of multichannel electroencephalogram (EEG) signals, we develop a novel EEG-based spatial-temporal convolutional neural network (ESTCNN) to detect driver fatigue. First, we introduce the core block to extract temporal dependencies from EEG signals. Then, we employ dense layers to fuse spatial features and realize classification. The developed network could automatically learn valid features from EEG signals, which outperforms the classical two-step machine learning algorithms. Importantly, we carry out fatigue driving experiments to collect EEG signals from eight subjects being alert and fatigue states. Using 2800 samples under within-subject splitting, we compare the effectiveness of ESTCNN with eight competitive methods. The results indicate that ESTCNN fulfills a better classification accuracy of 97.37% than these compared methods. Furthermore, the spatial-temporal structure of this framework advantages in computational efficiency and reference time, which allows further implementations in the brain-computer interface online systems.


Assuntos
Condução de Veículo , Eletroencefalografia/métodos , Fadiga/fisiopatologia , Redes Neurais de Computação , Realidade Virtual , Adulto , Condução de Veículo/psicologia , Fadiga/diagnóstico , Fadiga/psicologia , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Fatores de Tempo , Adulto Jovem
6.
Chaos ; 28(8): 085713, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30180616

RESUMO

Smart home has been widely used to improve the living quality of people. Recently, the brain-computer interface (BCI) contributes greatly to the smart home system. We design a BCI-based smart home system, in which the event-related potentials (ERP) are induced by the image interface based on the oddball paradigm. Then, we investigate the influence of mental fatigue on the ERP classification by the Fisher linear discriminant analysis. The results indicate that the classification accuracy of ERP decreases as the brain evolves from the normal stage to the mental fatigue stage. In order to probe into the difference of the brain, cognitive process between mental fatigue and normal states, we construct multivariate weighted recurrence networks and analyze the variation of the weighted clustering coefficient and weighted global efficiency corresponding to these two brain states. The findings suggest that these two network metrics allow distinguishing normal and mental fatigue states and yield novel insights into the brain fatigue behavior resulting from a long use of the ERP-based smart home system. These properties render the multivariate recurrence network, particularly useful for analyzing electroencephalographic recordings from the ERP-based smart home system.


Assuntos
Eletroencefalografia/métodos , Potenciais Evocados , Processamento de Sinais Assistido por Computador , Tecnologia sem Fio , Eletroencefalografia/instrumentação , Humanos
7.
Sci Rep ; 7(1): 5493, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710402

RESUMO

Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

8.
Chaos ; 27(3): 035809, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28364741

RESUMO

The exploration of the spatial dynamical flow behaviors of oil-water flows has attracted increasing interests on account of its challenging complexity and great significance. We first technically design a double-layer distributed-sector conductance sensor and systematically carry out oil-water flow experiments to capture the spatial flow information. Based on the well-established recurrence network theory, we develop a novel multiplex multivariate recurrence network (MMRN) to fully and comprehensively fuse our double-layer multi-channel signals. Then we derive the projection networks from the inferred MMRNs and exploit the average clustering coefficient and the spectral radius to quantitatively characterize the nonlinear recurrent behaviors related to the distinct flow patterns. We find that these two network measures are very sensitive to the change of flow states and the distributions of network measures enable to uncover the spatial dynamical flow behaviors underlying different oil-water flow patterns. Our method paves the way for efficiently analyzing multi-channel signals from multi-layer sensor measurement system.

9.
Chaos ; 27(3): 035805, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28364745

RESUMO

Characterizing the flow structure underlying the evolution of oil-in-water bubbly flow remains a contemporary challenge of great interests and complexity. In particular, the oil droplets dispersing in a water continuum with diverse size make the study of oil-in-water bubbly flow really difficult. To study this issue, we first design a novel complex impedance sensor and systematically conduct vertical oil-water flow experiments. Based on the multivariate complex impedance measurements, we define modalities associated with the spatial transient flow structures and construct modality transition-based network for each flow condition to study the evolution of flow structures. In order to reveal the unique flow structures underlying the oil-in-water bubbly flow, we filter the inferred modality transition-based network by removing the edges with small weight and resulting isolated nodes. Then, the weighted clustering coefficient entropy and weighted average path length are employed for quantitatively assessing the original network and filtered network. The differences in network measures enable to efficiently characterize the evolution of the oil-in-water bubbly flow structures.

10.
Sci Rep ; 6: 35622, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759088

RESUMO

Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis.

11.
Sci Rep ; 6: 20052, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26833427

RESUMO

High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...