Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 36(6): e4744, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434864

RESUMO

Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) is a promising molecular imaging tool that allows sensitive detection of endogenous metabolic changes. However, because the CEST spectrum does not display a clear peak like MR spectroscopy, its signal interpretation is challenging, especially under 3-T field strength or with a large saturation B1 . Herein, as an alternative to conventional Z-spectral fitting approaches, a permuted random forest (PRF) method is developed to determine featured saturation frequencies for lesion identification, so-called CEST frequency importance analysis. Briefly, voxels in the CEST dataset were labeled as lesion and control according to multicontrast MR images. Then, by considering each voxel's saturation signal series as a sample, a permutation importance algorithm was employed to rank the contribution of saturation frequency offsets in the differentiation of lesion and normal tissue. Simulations demonstrated that PRF could correctly determine the frequency offsets (3.5 or -3.5 ppm) for classifying two groups of Z-spectra, under a range of B0 , B1 conditions and sample sizes. For ischemic rat brains, PRF only displayed high feature importance around amide frequency at 2 h postischemia, reflecting that the pH changes occurred at an early stage. By contrast, the data acquired at 24 h postischemia exhibited high feature importance at multiple frequencies (amide, water, and lipids), which suggested the complex tissue changes that occur during the later stages. Finally, PRF was assessed using 3-T CEST data from four brain tumor patients. By defining the tumor region on amide proton transfer-weighted images, PRF analysis identified different CEST frequency importance for two types of tumors (glioblastoma and metastatic tumor) (p < 0.05, with each image slice as a subject). In conclusion, the PRF method was able to rank and interpret the contribution of all acquired saturation offsets to lesion identification; this may facilitate CEST analysis in clinical applications, and open up new doors for comprehensive CEST analysis tools other than model-based approaches.


Assuntos
Neoplasias Encefálicas , Algoritmo Florestas Aleatórias , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Prótons , Amidas
2.
Magn Reson Med ; 89(2): 620-635, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253943

RESUMO

PURPOSE: Design an efficient CEST scheme for exchange-dependent images with high contrast-to-noise ratio. THEORY: Reassembled saturation transfer (REST) signals were defined as Δ $$ \Delta $$ r.Z = r.Zref - r.ZCEST and the reassembled exchange-dependen magnetization transfer ratio r.MTRRex  = r.1/Zref - r.1/ZCEST , utilizing the averages over loosely sampled reference frequency offsets as Zref and over densely sampled target offsets as ZCEST . Using r.MTRRex measured under 2 B1,sat values, exchange rate could be estimated. METHODS: The REST approach was optimized and assessed quantitatively by simulations for various exchange rates, pool concentration, and water T1 . In vivo evaluation was performed on ischemic rat brains at 7 Tesla and human brains at 3 Tesla, in comparison with conventional asymmetrical analysis, Lorentzian difference (LD), an MTRRex_ LD. RESULTS: For a broad choice of Δ ω ref $$ \Delta {\omega}_{ref} $$ ranges and numbers, Δr.Z and r.MTRRex exhibited comparable quantification features with conventional LD and MTRRex _LD, respectively, when B1,sat  ≤ 1 µT. The subtraction of 2 REST values under distinct B1,sat values showed linear relationships with exchange rate and obtained immunity to field inhomogeneity and variation in MT and water T1 . For both rat and human studies, REST images exhibited similar contrast distribution to MTRRex _LD, with superiority in contrast-to-noise ratio and acquisition efficiency. Compared with MTRRex _LD, 2-B1,sat subtraction REST images displayed better resistance to B1 inhomogeneity, with more specific enhanced regions. They also showed higher signals for amide than for nuclear Overhauser enhancement effect in human brain, presumably reflecting the higher increment from faster-exchanging species as B1,sat increased. CONCLUSION: Featuring high contrast-to-noise ratio efficiency, REST could be a practical exchange-dependent approach readily applicable to either retrospective Z-spectra analysis or perspective 6-offset acquisition.


Assuntos
Amidas , Imageamento por Ressonância Magnética , Animais , Humanos , Ratos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Sensibilidade e Especificidade , Encéfalo/diagnóstico por imagem , Água
3.
Tomography ; 8(4): 1974-1986, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36006063

RESUMO

Amide proton transfer (APT)-weighted MRI is a promising molecular imaging technique that has been employed in clinic for detection and grading of brain tumors. MTRasym, the quantification method of APT, is easily influenced by B0 inhomogeneity and causes artifacts. Current model-free interpolation methods have enabled moderate B0 correction for middle offsets, but have performed poorly at limbic offsets. To address this shortcoming, we proposed a practical B0 correction approach that is suitable under time-limited sparse acquisition scenarios and for B1 ≥ 1 µT under 3T. In this study, this approach employed a simplified Lorentzian model containing only two pools of symmetric water and asymmetric solutes, to describe the Z-spectral shape with wide and 'invisible' CEST peaks. The B0 correction was then performed on the basis of the fitted two-pool Lorentzian lines, instead of using conventional model-free interpolation. The approach was firstly evaluated on densely sampled Z-spectra data by using the spline interpolation of all acquired 16 offsets as the gold standard. When only six offsets were available for B0 correction, our method outperformed conventional methods. In particular, the errors at limbic offsets were significantly reduced (n = 8, p < 0.01). Secondly, our method was assessed on the six-offset APT data of nine brain tumor patients. Our MTRasym (3.5 ppm), using the two-pool model, displayed a similar contrast to the vendor-provided B0-orrected MTRasym (3.5 ppm). While the vendor failed in correcting B0 at 4.3 and 2.7 ppm for a large portion of voxels, our method enabled well differentiation of B0 artifacts from tumors. In conclusion, the proposed approach could alleviate analysis errors caused by B0 inhomogeneity, which is useful for facilitating the comprehensive metabolic analysis of brain tumors.


Assuntos
Neoplasias Encefálicas , Prótons , Amidas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Dimaprit/análogos & derivados , Humanos , Imageamento por Ressonância Magnética/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...