Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1395810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863495

RESUMO

Previous laboratory-scale studies have consistently shown that carbon-based conductive materials can notably improve the anaerobic digestion of food waste, typically employing reactors with regular capacity of 1-20 L. Furthermore, incorporating riboflavin-loaded conductive materials can further address the imbalance between fermentation and methanogenesis in anaerobic systems. However, there have been few reports on pilot-scale investigation. In this study, a 10 m2 of riboflavin modified carbon cloth was incorporated into a pilot-scale (2 m3) food waste anaerobic reactor to improve its treatment efficiency. The study found that the addition of riboflavin-loaded carbon cloth can increase the maximum organic loading rate (OLR) by 40% of the pilot-scale reactor, compared to the system using carbon cloth without riboflavin loading, while ensuring efficient operation of the reaction system, effectively alleviating system acidification, sustaining methanogen activity, and increasing daily methane production by 25%. Analysis of the microbial community structure revealed that riboflavin-loaded carbon cloth enriched the methanogenic archaea in the genera of Methanothrix and Methanobacterium, which are capable of extracellular direct interspecies electron transfer (DIET). And metabolic pathway analysis identified the methane production pathway, highly enriched on the reduction of acetic acid and CO2 at riboflavin-loaded carbon cloth sample. The expression levels of genes related to methane production via DIET pathway were also significantly upregulated. These results can provide important guidance for the practical application of food waste anaerobic digestion engineering.

2.
Ann Ital Chir ; 95(3): 284-293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38918965

RESUMO

AIM: Some studies have reported that body composition profiles affect clinical outcomes of multidisciplinary treatments in several types of cancers; however, a paucity of data exists on the association in neoadjuvant immunotherapy. In the present study, we aimed to investigate the effect of body composition on the clinical outcomes of patients with esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant immunotherapy plus chemotherapy (nICT). METHODS: Clinicopathological data and computed tomography (CT) images of 85 patients with locally advanced ESCC who underwent esophagectomy after nICT were collected. At diagnosis and before surgery, the CT scan of the third lumbar vertebra was chosen to evaluate the skeletal muscle index (SMI), skeletal muscle radiodensity (SMD), the subcutaneous and the visceral adiposity index. The relationships between body composition and tumor response after nICT and postoperative complications were analyzed. RESULTS: The clinical stage (Odds Ratio (OR) 0.345, 95% confidence interval (CI) 0.141-0.844, p = 0.020) and change in SMI (∆SMI, OR 1.394, 95% CI 1.061-1.832, p = 0.017) were associated with tumor remission after nICT. Moreover, the multivariate logistic analysis revealed that ∆SMI (OR 0.598, 95% CI 0.433-0.828, p = 0.002) was associated with the incidence of postoperative complications. Patients with ∆SMI <-1 had a higher rate of postoperative complications (56% vs 15%, p < 0.001). CONCLUSIONS: For ESCC, ∆SMI is associated with the pathological response after nICT and postoperative complications. Further analysis is needed to clarify whether nutritional intervention during neoadjuvant therapy increases SMI and thus improves clinical outcomes.


Assuntos
Composição Corporal , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Terapia Neoadjuvante , Humanos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patologia , Masculino , Feminino , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/patologia , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Esofagectomia , Imunoterapia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
3.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119771, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38844181

RESUMO

AMP-activated protein kinase (AMPK) is a typical sensor of intracellular energy metabolism. Our previous study revealed the role of activated AMPK in the suppression of osteogenic differentiation and traumatic heterotopic ossification, but the underlying mechanism remains poorly understood. The E3 ubiquitin ligase Smurf1 is a crucial regulator of osteogenic differentiation and bone formation. We report here that Smurf1 is primarily SUMOylated at a C-terminal lysine residue (K324), which enhances its activity, facilitating ALK2 proteolysis and subsequent bone morphogenetic protein (BMP) signaling pathway inhibition. Furthermore, SUMOylation of the SUMO E3 ligase PIAS3 and Smurf1 SUMOylation was suppressed during the osteogenic differentiation and traumatic heterotopic ossification. More importantly, we found that AMPK activation enhances the SUMOylation of Smurf1, which is mediated by PIAS3 and increases the association between PIAS3 and AMPK. Overall, our study revealed that Smurf1 can be SUMOylated by PIAS3, Furthermore, Smurf1 SUMOylation mediates osteogenic differentiation and traumatic heterotopic ossification through suppression of the BMP signaling pathway. This study revealed that promotion of Smurf1 SUMOylation by AMPK activation may be implicated in traumatic heterotopic ossification treatment.

4.
Life Sci ; 351: 122779, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851421

RESUMO

Heterotopic ossification (HO) refers to the formation of pathologic bone in nonskeletal tissues (including muscles, tendons or other soft tissues). HO typically occurs after a severe injury and can occur in any part of the body. HO lesions are highly vascularized. Angiogenesis, which is the formation of new blood vessels, plays an important role in the pathophysiology of HO. Surgical resection is considered an effective treatment for HO. However, it is difficult to completely remove new vessels, which can lead to the recurrence of HO and is often accompanied by significant problems such as intraoperative hemorrhage, demonstrating the important role of angiogenesis in HO. Here, we broadly summarize the current understanding of how angiogenesis contributes to HO; in particular, we focus on new insights into the cellular and signaling mechanisms underlying HO angiogenesis. We also review the development and current challenges associated with antiangiogenic therapy for HO.


Assuntos
Neovascularização Patológica , Ossificação Heterotópica , Ossificação Heterotópica/patologia , Ossificação Heterotópica/fisiopatologia , Humanos , Neovascularização Patológica/patologia , Animais , Transdução de Sinais , Inibidores da Angiogênese/uso terapêutico , Relevância Clínica , Angiogênese
5.
World J Clin Oncol ; 15(4): 554-565, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38689624

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy with a high morbidity and mortality rate. TMEM100 has been shown to be suppressor gene in a variety of tumors, but there are no reports on the role of TMEM100 in esophageal cancer (EC). AIM: To investigate epigenetic regulation of TMEM100 expression in ESCC and the effect of TMEM100 on ESCC proliferation and invasion. METHODS: Firstly, we found the expression of TMEM100 in EC through The Cancer Genome Atlas database. The correlation between TMEM100 gene expression and the survival of patients with EC was further confirmed through Kaplan-Meier analysis. We then added the demethylating agent 5-AZA to ESCC cell lines to explore the regulation of TMEM100 expression by epigenetic modification. To observe the effect of TMEM100 expression on tumor proliferation and invasion by overexpressing TMEM100. Finally, we performed gene set enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Annotation System database to look for pathways that might be affected by TMEM100 and verified the effect of TMEM100 expression on the mitogen-activated protein kinases (MAPK) pathway. RESULTS: In the present study, by bioinformatic analysis we found that TMEM100 was lowly expressed in EC patients compared to normal subjects. Kaplan-meier survival analysis showed that low expression of TMEM100 was associated with poor prognosis in patients with EC. Then, we found that the demethylating agent 5-AZA resulted in increased expression of TMEM100 in ESCC cells [quantitative real-time PCR (qRT-PCR) and western blotting]. Subsequently, we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells (qRT-PCR and western blotting). Overexpression of TMEM100 also inhibited proliferation, invasion and migration of ESCC cells (cell counting kit-8 and clone formation assays). Next, by enrichment analysis, we found that the gene set was significantly enriched in the MAPK signaling pathway. The involvement of TMEM100 in the regulation of MAPK signaling pathway in ESCC cell was subsequently verified by western blotting. CONCLUSION: TMEM100 is a suppressor gene in ESCC, and its low expression may lead to aberrant activation of the MAPK pathway. Promoter methylation may play a key role in regulating TMEM100 expression.

6.
Microbiome ; 12(1): 77, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664737

RESUMO

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Assuntos
Bactérias , Metagenômica , Nutrientes , Peptidoglicano , Fitoplâncton , Polissacarídeos , Água do Mar , Polissacarídeos/metabolismo , Água do Mar/microbiologia , Fitoplâncton/metabolismo , Fitoplâncton/genética , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiota
7.
Food Chem X ; 22: 101380, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665633

RESUMO

In order to re-utilize the residual from the distillation of the Chinese wolfberry wine and reduce the environmental pollution, the residual is firstly filtered by the ceramic membrane of 50 nm, then the Cu (II) has transferred from the distillation is removed using the ion exchange resin, and the treated solution is recombined with the distilled liquor to make the Chinese wolfberry brandy and the comparison has conducted on the physicochemical properties, antioxidant activity and flavor compounds between the recombined brandy and the finished brandy. The results indicate that the Cu (II) was effectively removed by ceramic membrane combined with the D401 resin. Compared with finished brandy, the recombined brandy contains high contents of polysaccharides, phenols and flavonoids, thus contributing to the improvement of antioxidant capacity. The gas chromatography-ion mobility spectrometry (GC-IMS) reveals that 25 volatile compounds like esters and alcohols have identified in the brandy samples, and the differences are significant between the recombined and the finished brandy. In summary, the distilled residual from the Chinese wolfberry wine might be re-used after the appropriate treatment so as to reduce the discharge and environmental pollution.

8.
J Environ Manage ; 357: 120843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588621

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Assuntos
Óxido Ferroso-Férrico , Nitritos , Nitritos/metabolismo , Transporte de Elétrons , Anaerobiose , Metano , Elétrons , Desnitrificação , Oxirredução , Bactérias/metabolismo , Bactérias Anaeróbias/metabolismo , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia
9.
Chemosphere ; 358: 142174, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685325

RESUMO

Silver (Ag) is a pivotal transition metal with applications in multiple industries, necessitating efficient recovery techniques. Despite various proposed methods for silver recovery from wastewaters, challenges persist especially for low concentrations. In this context, bioreduction by bacteria like Geobacter sulfurreducens, offers a promising approach by converting Ag(I) to Ag nanoparticles. To reveal the mechanisms driving microbial Ag(I) reduction, we conducted transcriptional profiling of G. sulfurreducens under Ag(I)-reducing condition. Integrated transcriptomic and protein-protein interaction network analyses identified significant transcriptional shifts, predominantly linked to c-type cytochromes, NADH, and pili. When compared to a pilus-deficient strain, the wild-type strain exhibited distinct cytochrome gene expressions, implying specialized functional roles. Additionally, despite a down-regulation in NADH dehydrogenase genes, we observed up-regulation of specific downstream cytochrome genes, highlighting NADH's potential role as an electron donor in the Ag(I) reduction process. Intriguingly, our findings also highlight the significant influence of pili on the morphology of the resulting Ag nanoparticles. The presence of pili led to the formation of smaller and more crystallized Ag nanoparticles. Overall, our findings underscore the intricate interplay of cytochromes, NADH, and pili in Ag(I) reduction. Such insights suggest potential strategies for further enhancing microbial Ag(I) reduction.


Assuntos
Citocromos , Fímbrias Bacterianas , Geobacter , NAD , Oxirredução , Prata , Transcriptoma , Geobacter/metabolismo , Geobacter/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Citocromos/metabolismo , Citocromos/genética , NAD/metabolismo , Nanopartículas Metálicas/química
10.
Chin J Integr Med ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570473

RESUMO

OBJECTIVE: To investigate whether Naoxueshu Oral Liquid (NXS) could promote hematoma absorption in post-craniotomy hematoma (PCH) patients. METHODS: This is an open-label, multicenter, and randomized controlled trial conducted at 9 hospitals in China. Patients aged 18-80 years with post-craniotomy supratentorial hematoma volume ranging from 10 to 30 mL or post-craniotomy infratentorial hematoma volume less than 10 mL, or intraventricular hemorrhage following cranial surgery were enrolled. They were randomly assigned at a 1:1 ratio to the NXS (10 mL thrice daily for 15 days) or control groups using a randomization code table. Standard medical care was administered in both groups. The primary outcome was the percentage reduction in hematoma volume from day 1 to day 15. The secondary outcomes included the percentage reduction in hematoma volume from day 1 to day 7, the absolute reduction in hematoma volume from day 1 to day 7 and 15, and the change in neurological function from day 1 to day 7 and 15. The safety was closely monitored throughout the study. Moreover, subgroup analysis was performed based on age, gender, history of diabetes, and etiology of intracerebral hemorrhage (ICH). RESULTS: A total of 120 patients were enrolled and randomly assigned between March 30, 2018 and April 15, 2020. One patient was lost to follow-up in the control group. Finally, there were 119 patients (60 in the NXS group and 59 in the control group) included in the analysis. In the full analysis set (FAS) analysis, the NXS group had a greater percentage reduction in hematoma volume from day 1 to day 15 than the control group [median (Q1, Q3): 85% (71%, 97%) vs. 76% (53%, 93%), P<0.05]. The secondary outcomes showed no statistical significance between two groups, either in FAS or per-protocol set (P>0.05). Furthermore, no adverse events were reported during the study. In the FAS analysis, the NXS group exhibited a higher percentage reduction in hematoma volume on day 15 in the following subgroups: male patients, patients younger than 65 years, patients without diabetes, or those with initial cranial surgery due to ICH (all P<0.05). CONCLUSIONS: The administration of NXS demonstrated the potential to promote the percentage reduction in hematoma volume from day 1 to day 15. This intervention was found to be safe and feasible. The response to NXS may be influenced by patient characteristics. (Registration No. ChiCTR1800017981).

11.
Chin J Traumatol ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38548574

RESUMO

PURPOSE: Although traditional craniotomy (TC) surgery has failed to show benefits for the functional outcome of intracerebral hemorrhage (ICH). However, a minimally invasive hematoma removal plan to avoid white matter fiber damage may be a safer and more feasible surgical approach, which may improve the prognosis of ICH. We conducted a historical cohort study on the use of multimodal image fusion-assisted neuroendoscopic surgery (MINS) for the treatment of ICH, and compared its safety and effectiveness with traditional methods. METHODS: This is a historical cohort study involving 241 patients with cerebral hemorrhage. Divided into MINS group and TC group based on surgical methods. Multimodal images (CT skull, CT angiography, and white matter fiber of MRI diffusion-tensor imaging) were fused into 3 dimensional images for preoperative planning and intraoperative guidance of endoscopic hematoma removal in the MINS group. Clinical features, operative efficiency, perioperative complications, and prognoses between 2 groups were compared. Normally distributed data were analyzed using t-test of 2 independent samples, Non-normally distributed data were compared using the Kruskal-Wallis test. Meanwhile categorical data were analyzed via the Chi-square test or Fisher's exact test. All statistical tests were two-sided, and p < 0.05 was considered statistically significant. RESULTS: A total of 42 patients with ICH were enrolled, who underwent TC surgery or MINS. Patients who underwent MINS had shorter operative time (p < 0.001), less blood loss (p < 0.001), better hematoma evacuation (p = 0.003), and a shorter stay in the intensive care unit (p = 0.002) than patients who underwent TC. Based on clinical characteristics and analysis of perioperative complications, there is no significant difference between the 2 surgical methods. Modified Rankin scale scores at 180 days were better in the MINS than in the TC group (p = 0.014). CONCLUSIONS: Compared with TC for the treatment of ICH, MINS is safer and more efficient in cleaning ICH, which improved the prognosis of the patients. In the future, a larger sample size clinical trial will be needed to evaluate its efficacy.

13.
Sci Total Environ ; 913: 169744, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176559

RESUMO

Microbial electrosynthesis (MES) offers a promising approach for converting CO2 into valuable chemicals such as acetate. However, the relative low conversion rate severely limits its practical application. This study investigated the impact of different hydrogen evolution rates on the conversion rate of CO2 to acetate in the MES system. Three potentials (-0.8 V, -0.9 V and -1.0 V) corresponding to various hydrogen evolution rates were set and analyzed, revealing an optimal hydrogen evolution rate, yielding a maximum acetate formation rate of 1410.9 mg/L and 73.5 % coulomb efficiency. The electrochemical findings revealed that an optimal hydrogen evolution rate facilitated the formation of an electroactive biofilm. The microbial community of the cathode biofilm highlighted key genera, including Clostridium and Acetobacterium, which played essential roles in electrosynthesis within the MES system. Notably, a low hydrogen evolution rate failed to provide sufficient energy for the electrochemical reduction of CO2 to acetate, while a high rate led to cathode alkalinization, impeding the reaction and causing significant energy wastage. Therefore, maintaining an appropriate hydrogen evolution rate is crucial for the development of mature electroactive biofilms and achieving optimal performance in the MES system.


Assuntos
Dióxido de Carbono , Hidrogênio , Eletrodos , Acetatos , Biofilmes
14.
Environ Res ; 241: 117660, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979928

RESUMO

Cow dung generates globally due to increased beef and milk consumption, but its treatment efficiency remains low. Previous studies have shown that riboflavin-loaded conductive materials can improve anaerobic digestion through enhance direct interspecies electron transfer (DIET). However, its effect on the practical anaerobic digestion of cow dung remained unclear. In this study, carbon cloth loaded with riboflavin (carbon cloth-riboflavin) was added into an anaerobic digester treating cow dung. The carbon cloth-riboflavin reactor showed a better performance than other two reactors. The metagenomic analysis revealed that Methanothrix on the surface of the carbon cloth predominantly utilized the CO2 reduction for methane production, further enhanced after riboflavin addition, while Methanothrix in bulk sludge were using the acetate decarboxylation pathway. Furthermore, the carbon cloth-riboflavin enriched various major methanogenic pathways and activated a large number of enzymes associated with DIET. Riboflavin's presence altered the microbial communities and the abundance of functional genes relate to DIET, ultimately leading to a better performance of anaerobic digestion for cow dung.


Assuntos
Carbono , Elétrons , Bovinos , Animais , Anaerobiose , Metano , Reatores Biológicos , Esgotos
15.
Front Bioeng Biotechnol ; 11: 1330293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146344

RESUMO

Garden waste, one type of lignocellulosic biomass, holds significant potential for the production of volatile fatty acids (VFAs) through anaerobic fermentation. However, the hydrolysis efficiency of garden waste is limited by the inherent recalcitrance, which further influences VFA production. Granular activated carbon (GAC) could promote hydrolysis and acidogenesis efficiency during anaerobic fermentation. This study developed a strategy to use GAC to enhance the anaerobic fermentation of garden waste without any complex pretreatments and extra enzymes. The results showed that GAC addition could improve VFA production, especially acetate, and reach the maximum total VFA yield of 191.55 mg/g VSadded, which increased by 27.35% compared to the control group. The highest VFA/sCOD value of 70.01% was attained in the GAC-amended group, whereas the control group only reached 49.35%, indicating a better hydrolysis and acidogenesis capacity attributed to the addition of GAC. Microbial community results revealed that GAC addition promoted the enrichment of Caproiciproducens and Clostridium, which are crucial for anaerobic VFA production. In addition, only the GAC-amended group showed the presence of Sphaerochaeta and Oscillibacter genera, which are associated with electron transfer processes. Metagenomics analysis indicated that GAC addition improved the abundance of glycoside hydrolases (GHs) and key functional enzymes related to hydrolysis and acidogenesis. Furthermore, the assessment of major genera influencing functional genes in both groups indicated that Sphaerochaeta, Clostridium, and Caproicibacter were the primary contributors to upregulated genes. These findings underscored the significance of employing GAC to enhance the anaerobic fermentation of garden waste, offering a promising approach for sustainable biomass conversion and VFA production.

16.
Environ Int ; 182: 108325, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995388

RESUMO

The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.


Assuntos
Alginatos , Microbiota , Alginatos/metabolismo , Bactérias/genética , Água do Mar/microbiologia
17.
Stress Biol ; 3(1): 26, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676394

RESUMO

The thermotolerant yeast Kluyveromyces marxianus is known for its potential in high-temperature ethanol fermentation, yet it suffers from excess acetic acid production at elevated temperatures, which hinders ethanol production. To better understand how the yeast responds to acetic acid stress during high-temperature ethanol fermentation, this study investigated its transcriptomic changes under this condition. RNA sequencing (RNA-seq) was used to identify differentially expressed genes (DEGs) and enriched gene ontology (GO) terms and pathways under acetic acid stress. The results showed that 611 genes were differentially expressed, and GO and pathway enrichment analysis revealed that acetic acid stress promoted protein catabolism but repressed protein synthesis during high-temperature fermentation. Protein-protein interaction (PPI) networks were also constructed based on the interactions between proteins coded by the DEGs. Hub genes and key modules in the PPI networks were identified, providing insight into the mechanisms of this yeast's response to acetic acid stress. The findings suggest that the decrease in ethanol production is caused by the imbalance between protein catabolism and protein synthesis. Overall, this study provides valuable insights into the mechanisms of K. marxianus's response to acetic acid stress and highlights the importance of maintaining a proper balance between protein catabolism and protein synthesis for high-temperature ethanol fermentation.

18.
Nano Lett ; 23(17): 8106-8114, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610427

RESUMO

Quasi-solid-state electrolytes (QSSEs) are gaining huge popularity because of their significantly improved safety performance over nonaqueous liquid electrolytes and superior process adaptability over all-solid-state electrolytes. However, because of the existence of liquid molecules, QSSEs typically have low lithium ion transference numbers and compromised thermal stability. In this work, we present the fabrication of a well-rounded QSSE by introducing hexagonal boron nitride nanoflakes (BNNFs) as an inorganic filler in a poly(vinylene carbonate) matrix. BNNFs, in contrast to most inorganic fillers used as anion trappers, are used to build fast lithium ion transport pathways directly on their two-dimensional surfaces. We confirm the attractive coupling between lithium ions and BNNFs, and we confirm that with the help of BNNFs, lithium ions can migrate with less damping and a lower transport energy barrier. As a result, the designed electrolyte exhibits good ion transportability, promoted fire retardancy, and good compatibility with lithium metal anodes and commercial cathodes.

19.
J Environ Manage ; 345: 118840, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604105

RESUMO

Phosphorus (P) recovery from wastewaters treated with constructed wetlands (CWs) could alleviate the current global P crisis but has not received sufficient attention. In this study, P transformation in different magnesium-based electrochemical CWs, including micro-electrolysis CW (M-CW), primary battery CW (P-CW), and electrolysis CW (E-CW), was thoroughly examined. The results revealed that the P removal efficiency was 53.0%, 75.8%, and 61.9% in the M-CW, E-CW, and P-CW, respectively. P mass balance analysis showed that P electrode deposition was the main reason for the higher P removal in the E-CW and P-CW. Significant differences were found between the E-CW and P-CW, P was distributed primarily on the magnesium plate in the P-CW but was distributed on the carbon plate in the E-CW. The E-CW had excellent P recovery capacity, and struvite was the major P recovery product. More intense magnesium plate corrosion and alkaline environment increased struvite precipitation in the E-CW, with the proportion of 61.6%. The results of functional microbial community analysis revealed that the abundance of electroactive bacteria was positively correlated with the deposition of struvite. This study provided an essential reference for the targeted electrochemical regulation of electric field processes and microorganisms in CWs to enhance P recovery.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Magnésio , Fósforo/análise , Estruvita , Áreas Alagadas , Nitrogênio/análise
20.
J Environ Manage ; 344: 118502, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390578

RESUMO

Bioelectrochemical Systems (BESs) leverage microbial metabolic processes to either produce electricity by degrading organic matter or consume electricity to assist metabolism, and can be used for various applications such as energy production, wastewater treatment, and bioremediation. Given the intricate mechanisms of BESs, the application of artificial intelligence (AI)-based methods have been proposed to enhance the performance of BESs due to their capability to identify patterns and gain insights through data analysis. This review focuses on the analysis and comparison of AI algorithms commonly used in BESs, including artificial neural network (ANN), genetic programming (GP), fuzzy logic (FL), support vector regression (SVR), and adaptive neural fuzzy inference system (ANFIS). These algorithms have different features, such as ANN's simple network structure, GP's use in the training process, FL's human-like thought process, SVR's high prediction accuracy and robustness, and ANFIS's combination of ANN and FL features. The AI-based methods have been applied in BESs to predict microbial communities, products or substrates, and reactor performance, which can provide valuable information and improve system efficiency. Limitations of AI-based methods for predicting and optimizing BESs and recommendations for future development are also discussed. This review demonstrates the potential of AI-based methods in optimizing BESs and provides valuable information for the future development of this field.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Algoritmos , Eletricidade , Lógica Fuzzy
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...