Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6701): eadk5382, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870290

RESUMO

Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.


Assuntos
Proteases Dependentes de ATP , Artemisininas , Enzima de Clivagem da Cadeia Lateral do Colesterol , Proteínas Mitocondriais , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Ratos , Androgênios/metabolismo , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Modelos Animais de Doenças , Hiperandrogenismo/tratamento farmacológico , Hiperandrogenismo/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ovário/efeitos dos fármacos , Ovário/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Proteólise , Camundongos Endogâmicos C57BL , Adulto Jovem , Adulto , Ratos Sprague-Dawley , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo
2.
Acta Pharmacol Sin ; 44(10): 2103-2112, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37193754

RESUMO

Checkpoint inhibitors such as PD-1/PD-L1 antibody therapeutics are a promising option for the treatment of multiple cancers. Due to the inherent limitations of antibodies, great efforts have been devoted to developing small-molecule PD-1/PD-L1 signaling pathway inhibitors. In this study we established a high-throughput AlphaLISA assay to discover small molecules with new skeletons that could block PD-1/PD-L1 interaction. We screened a small-molecule library of 4169 compounds including natural products, FDA approved drugs and other synthetic compounds. Among the 8 potential hits, we found that cisplatin, a first-line chemotherapeutic drug, reduced AlphaLISA signal with an EC50 of 8.3 ± 2.2 µM. Furthermore, we showed that cisplatin-DMSO adduct, but not semplice cisplatin, inhibited PD-1/PD-L1 interaction. Thus, we assessed several commercial platinum (II) compounds, and found that bis(benzonitrile) dichloroplatinum (II) disturbed PD-1/PD-L1 interaction (EC50 = 13.2 ± 3.5 µM). Its inhibitory activity on PD-1/PD-L1 interaction was confirmed in co-immunoprecipitation and PD-1/PD-L1 signaling pathway blockade bioassays. Surface plasmon resonance assay revealed that bis(benzonitrile) dichloroplatinum (II) bound to PD-1 (KD = 2.08 µM) but not PD-L1. In immune-competent wild-type mice but not in immunodeficient nude mice, bis(benzonitrile) dichloroplatinum (II) (7.5 mg/kg, i.p., every 3 days) significantly suppressed the growth of MC38 colorectal cancer xenografts with increasing tumor-infiltrating T cells. These data highlight that platinum compounds are potential immune checkpoint inhibitors for the treatment of cancers.


Assuntos
Cisplatino , Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Humanos , Camundongos , Anticorpos , Antígeno B7-H1/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Camundongos Nus , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Inibidores de Checkpoint Imunológico/farmacologia
3.
Sci China Life Sci ; 66(8): 1869-1887, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37059927

RESUMO

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteínas , Ligação Proteica
4.
Acta Pharmacol Sin ; 42(10): 1556-1566, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33495516

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by toxic aggregates of mutant huntingtin protein (mHTT) in the brain. Decreasing mHTT is a potential strategy for therapeutic purpose of HD. Valosin-containing protein (VCP/p97) is a crucial regulator of proteostasis, which regulates the degradation of damaged protein through proteasome and autophagy pathway. Since VCP has been implicated in pathogenesis of HD as well as other neurodegenerative diseases, small molecules that specifically regulate the activity of VCP may be of therapeutic benefits for HD patients. In this study we established a high-throughput screening biochemical assay for VCP ATPase activity measurement and identified gossypol, a clinical approved drug in China, as a novel modulator of VCP. Gossypol acetate dose-dependently inhibited the enzymatic activity of VCP in vitro with IC50 of 6.53±0.6 µM. We further demonstrated that gossypol directly bound to the interface between the N and D1 domains of VCP. Gossypol acetate treatment not only lowered mHTT levels and rescued HD-relevant phenotypes in HD patient iPS-derived Q47 striatal neurons and HD knock-in mouse striatal cells, but also improved motor function deficits in both Drosophila and mouse HD models. Taken together, gossypol acetate acted through a gain-of-function way to induce the formation of VCP-LC3-mHTT ternary complex, triggering autophagic degradation of mHTT. This study reveals a new strategy for treatment of HD and raises the possibility that an existing drug can be repurposed as a new treatment of neurodegenerative diseases.


Assuntos
Autofagia/efeitos dos fármacos , Gossipol/uso terapêutico , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Drosophila , Inibidores Enzimáticos/uso terapêutico , Feminino , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Multimerização Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteína com Valosina/antagonistas & inibidores , Proteína com Valosina/metabolismo
5.
Acta Pharmacol Sin ; 42(5): 801-813, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32796956

RESUMO

Grincamycins (GCNs) are a class of angucycline glycosides isolated from actinomycete Streptomyces strains that have potent antitumor activities, but their antitumor mechanisms remain unknown. In this study, we tried to identify the cellular target of grincamycin B (GCN B), one of most dominant and active secondary metabolites, using a combined strategy. We showed that GCN B-selective-induced apoptosis of human acute promyelocytic leukemia (APL) cell line NB4 through increase of ER stress and intracellular reactive oxygen species (ROS) accumulation. Using a strategy of combining phenotype, transcriptomics and protein microarray approaches, we identified that isocitrate dehydrogenase 1(IDH1) was the putative target of GCN B, and confirmed that GCNs were a subset of selective inhibitors targeting both wild-type and mutant IDH1 in vitro. It is well-known that IDH1 converts isocitrate to 2-oxoglutarate (2-OG), maintaining intracellular 2-OG homeostasis. IDH1 and its mutant as the target of GCN B were validated in NB4 cells and zebrafish model. Knockdown of IDH1 in NB4 cells caused the similar phenotype as GCN B treatment, and supplementation of N-acetylcysteine partially rescued the apoptosis caused by IDH1 interference in NB4 cells. In zebrafish model, GCN B effectively restored myeloid abnormality caused by overexpression of mutant IDH1(R132C). Taken together, we demonstrate that IDH1 is one of the antitumor targets of GCNs, suggesting wild-type IDH1 may be a potential target for hematological malignancies intervention in the future.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glicosídeos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Animais , Antraquinonas/metabolismo , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Glicosídeos/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
6.
Acta Pharmacol Sin ; 41(9): 1246-1254, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32210356

RESUMO

Mitophagy is a degradative pathway that mediates the degradation of the entire mitochondria, and defects in this process are implicated in many diseases including cancer. In mammals, mitophagy is mediated by BNIP3L (also known as NIX) that is a dual regulator of mitochondrial turnover and programmed cell death pathways. Acute myeloid leukemia (AML) cells with deficiency of BNIP3L are more sensitive to mitochondria-targeting drugs. But small molecular inhibitors for BNIP3L are currently not available. Some immunomodulatory drugs (IMiDs) have been proved by FDA for hematologic malignancies, however, the underlining molecular mechanisms are still elusive, which hindered the applications of BNIP3L inhibition for AML treatment. In this study we carried out MS-based quantitative proteomics analysis to identify the potential neosubstrates of a novel thalidomide derivative CC-885 in A549 cells. In total, we quantified 5029 proteins with 36 downregulated in CRBN+/+ cell after CC-885 administration. Bioinformatic analysis showed that macromitophagy pathway was enriched in the negative pathway after CC-885 treatment. We further found that CC-885 caused both dose- and time-dependent degradation of BNIP3L in CRBN+/+, but not CRBN-/- cell. Thus, our data uncover a novel role of CC-885 in the regulation of mitophagy by targeting BNIP3L for CRL4CRBN E3 ligase-dependent ubiquitination and degradation, suggesting that CC-885 could be used as a selective BNIP3L degradator for the further investigation. Furthermore, we demonstrated that CC-885 could enhance AML cell sensitivity to the mitochondria-targeting drug rotenone, suggesting that combining CC-885 and mitochondria-targeting drugs may be a therapeutic strategy for AML patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Mitofagia/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Talidomida/análogos & derivados , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Rotenona/farmacologia , Talidomida/farmacologia , Ubiquitinação/efeitos dos fármacos
8.
Cancer Biol Med ; 12(3): 163-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26487961

RESUMO

OBJECTIVE: Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. METHODS: Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. RESULTS: iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. CONCLUSION: FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.

9.
Diabetes ; 64(12): 4061-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26324179

RESUMO

Obesity is associated with chronic low-level inflammation, especially in fat tissues, which contributes to insulin resistance and type 2 diabetes mellitus (T2DM). Protein inhibitor of activated STAT 1 (PIAS1) modulates a variety of cellular processes such as cell proliferation and DNA damage responses. Particularly, PIAS1 functions in the innate immune system and is a key regulator of the inflammation cascade. However, whether PIAS1 is involved in the regulation of insulin sensitivity remains unknown. Here, we demonstrated that PIAS1 expression in white adipose tissue (WAT) was downregulated by c-Jun N-terminal kinase in prediabetic mice models. Overexpression of PIAS1 in inguinal WAT of prediabetic mice significantly improved systemic insulin sensitivity, whereas knockdown of PIAS1 in wild-type mice led to insulin resistance. Mechanistically, PIAS1 inhibited the activation of stress-induced kinases and the expression of nuclear factor-κB target genes in adipocytes, mainly including proinflammatory and chemotactic factors. In doing so, PIAS1 inhibited macrophage infiltration in adipose tissue, thus suppressing amplification of the inflammation cascade, which in turn improved insulin sensitivity. These results were further verified in a fat transplantation model. Our findings shed light on the critical role of PIAS1 in controlling insulin sensitivity and suggest a therapeutic potential of PIAS1 in T2DM.


Assuntos
Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Resistência à Insulina , Macrófagos/metabolismo , Obesidade/metabolismo , Estado Pré-Diabético/etiologia , Proteínas Inibidoras de STAT Ativados/metabolismo , Tecido Adiposo Branco/imunologia , Animais , Quimiotaxia , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Obesidade/imunologia , Obesidade/fisiopatologia , Obesidade/terapia , Estado Pré-Diabético/prevenção & controle , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/genética , Células RAW 264.7 , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
J Biol Chem ; 290(17): 11119-29, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25778399

RESUMO

The integration of signals involved in deciding the fate of mesenchymal stem cells is largely unknown. We used proteomics profiling to identify RhoGDIß, an inhibitor of the small G-protein Rho family, as a component that regulates commitment of C3H10T1/2 mesenchymal stem cells to the adipocyte or smooth muscle cell lineage in response to bone morphogenetic protein 4 (BMP4). RhoGDIß is notably down-regulated during BMP4-induced adipocytic lineage commitment of C3H10T1/2 mesenchymal stem cells, and this involves the cytoskeleton-associated protein lysyl oxidase. Excess RhoGDIß completely prevents BMP4-induced commitment to the adipocyte lineage and simultaneously stimulates smooth muscle cell commitment by suppressing the activation of Rac1. Overexpression of RhoGDIß induces stress fibers of F-actin by a process involving phosphomyosin light chain, indicating that cytoskeletal tension regulated by RhoGDIß contributes to determining adipocyte versus myocyte commitment. Furthermore, the overexpression of RacV12 (constitutively active form of Rac1) totally rescues the inhibition of adipocyte commitment by RhoGDIß, simultaneously preventing formation of the smooth muscle-like phenotype and disrupting the stress fibers in cells overexpressing RhoGDIß. Collectively, these results indicate that RhoGDIß functions as a novel BMP4 signaling target that regulates adipogenesis and myogensis.


Assuntos
Adipócitos/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/fisiologia , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo , Adipócitos/citologia , Animais , Proteína Morfogenética Óssea 4/genética , Linhagem Celular , Camundongos , Miócitos de Músculo Liso/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fibras de Estresse/genética , Fibras de Estresse/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/genética
11.
Mol Cell Biol ; 33(22): 4606-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24061474

RESUMO

It is well recognized that PIAS1, a SUMO (small ubiquitin-like modifier) E3 ligase, modulates such cellular processes as cell proliferation, DNA damage responses, and inflammation responses. Recent studies have shown that PIAS1 also plays a part in cell differentiation. However, the role of PIAS1 in adipocyte differentiation remains unknown. CCAAT/enhancer-binding protein ß (C/EBPß), a major regulator of adipogenesis, is a target of SUMOylation, but the E3 ligase responsible for the SUMOylation of C/EBPß has not been identified. The present study showed that PIAS1 functions as a SUMO E3 ligase of C/EBPß to regulate adipogenesis. PIAS1 expression was significantly and transiently induced on day 4 of 3T3-L1 adipocyte differentiation, when C/EBPß began to decline. PIAS1 was found to interact with C/EBPß through the SAP (scaffold attachment factor A/B/acinus/PIAS) domain and SUMOylate it, leading to increased ubiquitination and degradation of C/EBPß. C/EBPß became more stable when PIAS1 was silenced by RNA interference (RNAi). Moreover, adipogenesis was inhibited by overexpression of wild-type PIAS1 and promoted by knockdown of PIAS1. The mutational study indicated that the catalytic activity of SUMO E3 ligase was required for PIAS1 to restrain adipogenesis. Importantly, the inhibitory effect of PIAS1 overexpression on adipogenesis was rescued by overexpressed C/EBPß. Thus, PIAS1 could play a dynamic role in adipogenesis by promoting the SUMOylation of C/EBPß.


Assuntos
Adipogenia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células 3T3-L1 , Animais , Proteína beta Intensificadora de Ligação a CCAAT/química , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas Inibidoras de STAT Ativados/genética , Estabilidade Proteica , Proteólise , Sumoilação , Ubiquitinação
12.
Mol Cell Biol ; 33(16): 3180-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754749

RESUMO

Autophagy is a highly conserved self-digestion pathway involved in various physiological and pathophysiological processes. Recent studies have implicated a pivotal role of autophagy in adipocyte differentiation, but the molecular mechanism for its role and how it is regulated during this process are not clear. Here, we show that CCAAT /enhancer-binding protein ß (C/EBPß), an important adipogenic factor, is required for the activation of autophagy during 3T3-L1 adipocyte differentiation. An autophagy-related gene, Atg4b, is identified as a de novo target gene of C/EBPß and is shown to play an important role in 3T3-L1 adipocyte differentiation. Furthermore, autophagy is required for the degradation of Klf2 and Klf3, two negative regulators of adipocyte differentiation, which is mediated by the adaptor protein p62/SQSTM1. Importantly, the regulation of autophagy by C/EBPß and the role of autophagy in Klf2/3 degradation and in adipogenesis are further confirmed in mouse models. Our data describe a novel function of C/EBPß in regulating autophagy and reveal the mechanism of autophagy during adipocyte differentiation. These new insights into the molecular mechanism of adipose tissue development provide a functional pathway with therapeutic potential against obesity and its related metabolic disorders.


Assuntos
Adipócitos/citologia , Adipogenia , Autofagia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Cisteína Endopeptidases/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Cisteína Endopeptidases/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Proteólise , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo , Ativação Transcricional
13.
DNA Seq ; 15(3): 219-24, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15497447

RESUMO

Present work reported the cloning and characterization of a human novel RNA binding gene Partner of NOB1 (PNO1), with a length of 1637bp and a putative open reading frame of 759 bp, isolated from human kidney. It is composed of seven exons and is localized on chromosome 2p14. Western blot showed that the molecular weight of PNO1 is about 35kDa. RT-PCR results in 16 human tissues indicated that PNO1 is expressed mainly in liver, lung, spleen and kidney, slightly in thymus, testis, ovary, respectively, but not in heart, brain, skeletal muscle, placenta, pancreas, prostate, small intestine, colon and peripheral blood leukocytes. GFP fusion expression in mammalian cells exhibited its localization in the nucleus, especially in nucleoli. Subcellular localization of thirteen GFP fusion PNO1 deletion proteins showed that the region of 92-230 aa is solely responsible for its nucleolar retention, and KH domain alone is not sufficient for nucleolar retention. The PNO1 family shows significant conservation in both eukaryotes and prokaryotes.


Assuntos
Cromossomos Humanos Par 2/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Nucléolo Celular/metabolismo , Clonagem Molecular , Primers do DNA , Componentes do Gene , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde , Humanos , Rim/metabolismo , Dados de Sequência Molecular , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...