Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 136: 108703, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948366

RESUMO

NK-lysin (NKL) is a positively charged antimicrobial peptide with broad-spectrum bactericidal activities. In this study, the cDNA sequence of NKL (TmNKL) from black scraper (Thamnaconus modestus) was cloned, which encodes a predicted polypeptide of 150 amino acids that contains a surfactant protein B domain with three disulfide bonds. Phylogenetically, TmNKL was most closely related to its teleost counterpart from tiger puffer (Takifugu rubripes). Expression analysis demonstrated that TmNKL transcripts were constitutively expressed in all tested tissues, with the highest expression levels in the gills. Its expression was significantly upregulated in the gills, head kidney, and spleen after infection with Vibrio parahaemolyticus. A linear peptide (TmNKLP40L) and a disulfide-type peptide (TmNKLP40O) were further synthesized and results showed that disulfide bonds are not essential for bactericidal activities of TmNKL, and that both forms of TmNKL exhibited potent bactericidal activities against 4 gram- negative bacteria, including V. parahaemolyticus, V. alginolyticus, Edwardsiella tarda, and V. harveyi. Observed antimicrobial activities are likely due to the effects of TmNKLP40L and TmNKLP40O treatment on disrupting the integrity of both inner and outer membrane of V. parahaemolyticus, resulting in hydrolysis of bacterial genomic DNA. Damaged cell membranes and leakage of intracellular contents were further confirmed using scanning and transmission microscopy. Moreover, administration of 1.0 µg/g TmNKLP40L or TmNKLP40O significantly decreased bacterial load in tissues and thus, pronouncedly enhanced the survival of V. parahaemolyticus-infected fish. Overall, our results demonstrated that TmNKL is a potent innate effector and provides protective effects against bacterial infection.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Tetraodontiformes , Animais , Proteínas de Peixes/química , Peptídeos , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia , Doenças dos Peixes/microbiologia
2.
Fish Shellfish Immunol ; 104: 527-536, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32599058

RESUMO

Complement component 4 (C4) has critical immunological functions in vertebrates. In the current study, a C4 homolog (gcC4) was identified in grass carp (Ctenopharyngodon idella). The full-length 5458 bp gcC4 cDNA contained a 5148 bp open reading frame (ORF) encoding a protein of 1715 amino acids with a signal peptide and eight conservative domains. The gcC4 protein has a high level of identity with other fish C4 counterparts and is phylogenetically clustered with cyprinid fish C4. The gcC4 transcript shows wide tissue distribution and is inducible by Aeromonas hydrophila in vivo and in vitro. Furthermore, its expression also fluctuates upon lipopolysaccharide or flagellin stimulation in vitro. During infection, the gcC4 protein level decreases or increases to varying degrees, and the intrahepatic C4 expression location changes. With gcC4 overexpression, interleukin 1 beta, tumor necrosis factor alpha, and interferon transcripts are all upregulated by A. hydrophila infection. Meanwhile, overexpression of gcC4 reduces bacterial invasion or proliferation. Moreover, gcC4 may activate the NF-κB signaling pathway. These findings demonstrate the vital role of gcC4 in the innate immunity of grass carp.


Assuntos
Carpas/genética , Carpas/imunologia , Complemento C4/genética , Complemento C4/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Complemento C4/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , NF-kappa B/fisiologia , Filogenia , Alinhamento de Sequência/veterinária , Transdução de Sinais/imunologia
3.
Fish Shellfish Immunol ; 87: 871-878, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30776542

RESUMO

Viral infection is often accompanied with alteration of intracellular redox state, especially an imbalance between reactive oxygen species (ROS) production and antioxidant cellular defenses. The previous studies showed that an antioxidant cellular defense system, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), played an important role against spring viraemia of carp virus (SVCV) infection in fish. To further reveal the mediated mechanism that Nrf2 active state was affected by protein kinase C (PKC), here we evaluated SVCV replication in host cells by treated with a strong activator of PKC phorbol-12-myristate-13-acetate (PMA) and an inhibitor staurosporine. Our results showed that PMA significantly repressed SVCV replication and viral-induced apoptosis in Epithelioma papulosum cyprini (EPC) cell, suggesting that PKC may exhibit an anti-SVCV effect. Likewise, PMA resulted in a higher phosphorylation levels of PKCε rather than PKCα/ß to participate in the activation of Nrf2, mainly involved in the activation of Nrf2 phosphorylation of Ser40 to favor Nrf2 translocation to nucleus. Furthermore, the data revealed that PMA up-regulated an antiviral response heme oxygenase-1 (HO1) gene expression that was confirmed as the key player against SVCV infection by HO1 specific siRNA. Overall, this study provided a new therapeutic target for the treatment of SVCV infection, and modulating PKC activity could be used for the prevention and treatment of SVCV.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Proteína Quinase C-épsilon/imunologia , Rhabdoviridae/fisiologia , Acetato de Tetradecanoilforbol/análogos & derivados , Animais , Antioxidantes/metabolismo , Carpas/genética , Linhagem Celular , Proteínas de Peixes/genética , Fator 2 Relacionado a NF-E2/genética , Proteína Quinase C-épsilon/genética , Espécies Reativas de Oxigênio/metabolismo , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Acetato de Tetradecanoilforbol/farmacologia
4.
Fish Shellfish Immunol ; 70: 121-128, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28866274

RESUMO

Aeromonas hydrophila is the causative agent of bacterial septicemia that is frequently observed in grass carp, Ctenopharyngodon idellus. In this study, we evaluated the biological parameters and immune enzymes in the liver of grass carp following A. hydrophila infection and quantified the alterations in liver histology using a semi-quantitative system. For the biological parameters, we found that the liver somatic index (LSI) was more sensitive than Fulton's condition factor (CF) and was significantly decreased at three days post-injection (DPI). At the immune enzyme level, the level of peroxidase (POD) in the liver significantly increased at 1 and 3 DPI. The activity of alkaline phosphatase (ALP) significantly increased at 3 DPI. Similarly, acid phosphatase (ACP) activity significantly increased at 1, 3, and 5 DPI. Histologically, the results indicated that the liver index at 3, 5, and 7 DPI was significantly higher than that of control groups. The regressive alterations as the highly variable reactions patterns and its index at 5 DPI was significantly higher than that of 1, 21 DPI, and the control groups. Based on our results, we suggest that grass carp resist A. hydrophila infection via an innate immune mechanism in the liver. The findings of this study will help elucidate the underlying mechanisms of resistance to A. hydrophila infection.


Assuntos
Carpas , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata , Fígado/imunologia , Aeromonas hydrophila/fisiologia , Animais , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Fígado/anatomia & histologia
5.
Fish Shellfish Immunol ; 66: 93-102, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28479400

RESUMO

The mannan-binding lectin-associated serine protease-1 (MASP-1) gene is a crucial component of the lectin pathway in the complement and coagulation cascade. Although MASP-1 has been found in the immune system of teleosts, its immune functions in response to bacterial infection are unclear. In this study, we identified a MASP-1 homolog (gcMASP-1) in the grass carp (Ctenopharyngodon idella). The full-length 3308-bp gcMASP-1 cDNA includes a 2160-bp open reading frame encoding a protein composed of 719 amino acids with epidermal growth factor-like, complement control protein, and trypsin-like domains. gcMASP-1 shares a high similarity with MASP-1 counterparts in other species, and it is most closely related to Cyprinus carpio MASP-1 and Sinocyclocheilus anshuiensis MASP-1. Transcription of gcMASP-1 was widely distributed in different tissues and induced by Aeromonas hydrophila in vivo and in vitro. Expression of gcMASP-1 was also affected by lipopolysaccharide and flagellin stimulation in vitro. In cells over-expressing gcMASP-1, transcript levels of almost all components, except gcMBL and gcC5, were significantly enhanced, and gcIL1ß, gcTNF-α, gcIFN, gcCD59, gcC5aR1, and gcITGß-2 were significantly upregulated after exposure to A. hydrophila; gcMASP-1 interference downregulated the transcript levels after A. hydrophila challenge. In addition, gcMASP-1 activated NF-κB signaling. These findings indicate the vital role of gcMASP-1 in innate immunity in C. idella.


Assuntos
Aeromonas hydrophila/imunologia , Carpas , Doenças dos Peixes/enzimologia , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Aeromonas hydrophila/fisiologia , Animais , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/enzimologia , Infecções por Bactérias Gram-Negativas/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Análise de Sequência de DNA/veterinária
6.
Dev Comp Immunol ; 54(1): 20-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26315145

RESUMO

Rac1, a Rho GTPase, serves critical immunological functions in mammals. Here, a Rac1 homolog (gcRac1) was identified in grass carp (Ctenopharyngodon idella). The full-length 2023-base pair gcRac1 cDNA contained a 579-bp open reading frame encoding a 192-residue protein, including a conserved RHO domain and nuclear localization signal. The gcRac1 protein shares high identity with other Rac1 counterparts and phylogenetically clustered with Danio rerio Rac1. The gcRac1 transcript showed wide tissue distribution and was inducible by Aeromonas hydrophila in vivo and in vitro; its expression also fluctuated with LPS or flagellin stimulation in vitro. With gcRac1 over-expression, gcPAK1, gcIL1-ß, gcTNF-α and gcIFN were basically up-regulated by A. hydrophila and bacterial PAMPs induction, while gcRac1 knockdown decreased these transcripts after A. hydrophila challenge. Over-expression of gcRac1 reduced, while its suppression facilitated, bacterial invasion. Moreover, gcRac1 could activate NF-κB signaling. These findings implicate the vital role of gcRac1 in grass carp innate immunity.


Assuntos
Carpas/genética , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Carpas/metabolismo , Clonagem Molecular , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Transcriptoma/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...