Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2311515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153348

RESUMO

Real-time vascular positioning, postoperative flap monitoring, and vascular reconstruction assessment are of great importance in flap transplantation. Cyanine dyes offer the advantage of high resolution in the Near-infrared-II (NIR-II) imaging window. However, the nonspecific binding of many cyanine dyes to endogenous albumin leads to high organ accumulation and skin absorption, resulting in low-quality imaging and poor reproducibility of contrast during long-term (e.g., 7 days) postoperative monitoring. Here, a novel strategy is proposed that can be widely applied to prevent protein binding for NIR-I/II Cl-containing cyanine dyes. This strategy produces protein-escaping dyes, ensuring high fluorescence enhancement in the blood with rapid clearance and no residual fluorescence, allowing for short-term repeatable injections for vascular imaging. This strategy in the perioperative monitoring of pedicle perforator flap models in mice and rats is successfully applied. Furthermore, leveraging the universality of this strategy, multiple nonoverlapping protein-escaping probes that achieve dual-excitation (808 and 1064 nm) interference-free imaging of nerve-vessel and tumor-vessel simultaneously are designed and synthesized. These protein-escaping dyes enable long-term repeatable dual-color imaging of tumor localization, resection, and tumor-vessel reconstruction at the wound site.


Assuntos
Corantes Fluorescentes , Neoplasias , Camundongos , Ratos , Animais , Reprodutibilidade dos Testes , Imagem Óptica/métodos , Albuminas
2.
Adv Mater ; 35(46): e2306773, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713682

RESUMO

Despite the wide range of applications of bright NIR-II polymethine scaffolds in biomedical imaging, their solvatochromism and aggregation-caused quenching (ACQ) effects in aqueous solutions limit their inherent brightness using traditional encapsulation methods, and effective hydrophilization strategies are still scarce. Here, a new set of Flav dyes is synthesized and PEGylated, followed by manufacturing DSPE@FlavP2000 nanoparticles using a self-adaptive co-assembly strategy to overcome these limitations. FlavP2000 can autonomously adjust its conformation when co-assembled with DSPE-PEG2000 , resulting in high-efficiency luminescence (≈44.9% fluorescence of Flav in DMSO). DSPE@FlavP2000 enables NIR-IIb (>1500 nm) angiography with high signal-to-noise ratios. Notably, this co-assembly can occur in situ between FlavP2000 with proteins in the living body based on a novel mechanism of brightness activation induced by disassembly (BAD), achieving consistent brightness as DSPE@FlavP2000 in blood or serum. The self-adaptive co-assembly strategy can be enhanced by incorporating an IPA moiety, which dynamically binds to albumin to prolong the dye's blood circulation time. Thus, the "enhanced" BAD is successfully applied to long-term vascular imaging and sciatic nerve imaging. Both the self-adaptive co-assembly strategy and BAD phenomenon improve the selectivity and availability of the hydrophilization methods, paving the way for efficient biological applications of polymethine dyes.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/farmacologia , Diagnóstico por Imagem , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...