Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 9989-9998, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358461

RESUMO

Oxygen evolution reaction (OER) plays a crucial role as a counter half-reaction for both electrochemical hydrogen production through water splitting and the generation of valuable carbon compounds via CO2 reduction. To overcome the sluggish kinetics of the OER, significant efforts have been devoted to developing cost-effective, sustainable, and efficient electrocatalysts, with transition-metal-based catalysts emerging as promising candidates. Herein, we successfully synthesized a core-shell type nanostructure of Fe-doped CoMoOx/CoMoOx (CMFO), which exhibits excellent electrocatalytic properties for OER. The presence of an amorphous layer of Fe-doped CoMoOx with abundant oxygen vacancies, along with the stability of a key OER intermediate, *O, contributes to the enhanced activity of CMFO catalyst compared to pristine CoMoOx (CMO). The optimized catalyst of CMFO-550 achieved much lower overpotential and Tafel slope and also exhibited better remarkable long-term stability for over 90 h compared to CMO-550. These findings highlight the potential of CMFO-550 as a cost-effective and highly efficient electrocatalyst for the OER. The successful development of this core-shell nanostructure opens up a new opportunity for the design and synthesis of advanced electrocatalysts for the OER, with implications for various applications in energy conversion and storage.

2.
ACS Appl Mater Interfaces ; 16(4): 4700-4707, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241524

RESUMO

One-dimensional ZnO nanorods (NRs) have been extensively studied as photoanodes because of their unique optical properties, high electron mobility, and suitable band positions for water oxidation. However, their practical efficiency is often compromised by chemical instability during water oxidation and high carrier recombination rates. To overcome this issue, precise morphological control of ZnO@ZnWO4 core-shell structured photoanodes, featuring a ZnO core and a ZnWO4 shell was used. This was accomplished by depositing WO3 onto hydrothermally grown ZnO NRs using the thermal chemical vapor deposition process. The photoelectrochemical performance of ZnO@ZnWO4 with an optimized morphology outperforms that of pristine ZnO NRs. Systematic optical and electrochemical analyses of ZnO@ZnWO4 demonstrated that the enhancement is attributed to the enhanced charge transfer efficiency facilitated by the optimized ZnWO4 shells.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616035

RESUMO

In this study, we demonstrate a new approach to easily prepare spinel Co3O4 nanoparticles (s-Co3O4 NPs) in the gram-scale from the cathode of spent lithium ion batteries (SLIBs) by the alkali leaching of hexaamminecobalt(III) complex ions. As-obtained intermediate and final products were characterized with powder X-ray diffraction (PXRD), Ultraviolet-Visible (UV-Vis), Fourier transform infrared (FTIR), and Transmission electron microscopy (TEM). Additionally, the synthesized s-Co3O4 NPs showed better electrocatalytic properties toward the oxygen evolution reaction (OER) in comparison to previously reported Co3O4 NPs and nanowires, which could be due to the more exposed electrocatalytic active sites on the s-Co3O4 NPs. Moreover, the electrocatalytic activity of the s-Co3O4 NPs was comparable to the previously reported RuO2 catalysts. By taking advantage of the proposed recycling route, we would expect that various valuable transition metal oxide NPs could be prepared from SLIBs.

4.
ACS Appl Mater Interfaces ; 13(16): 18821-18828, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33851535

RESUMO

The evolution of "smart life," which connects all internet-of-things (IoT) microdevices and microsensors under wireless communication grids, requires microscale energy storage devices with high power and energy density and long-term cyclability to integrate them with sustainable power generators. Instead of Li-ion batteries with a short lifetime, pseudocapacitors with longer or infinite cyclability and high-power density have been considered as efficient energy storage devices for IoT. However, the design and fabrication of microscale pseudocapacitors have difficulties in patterning microscale electrodes when loading active materials at specific points of the electrodes using conventional microfabrication methods. Here, we developed a facile, one-step fabrication method of micro-supercapacitors (MSCs) through the in situ formation of Co metals and the reduced graphene oxides (rGOs) in a one-pot laser scribing process. The prepared Co/rGO MSC thus exhibited four times higher capacitance than the rGO MSC, due to the Faradaic charge capacitance behavior of the Co/rGO composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...