Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202563

RESUMO

Less defective, nitrogen-doped 3-dimensional graphene (N3DG) and defect-rich, nitrogen-doped 3-dimensional graphene (N3DG-D) were made by the thermal CVD (Chemical Vapor Deposition) process via varying the carbon precursors and synthesis temperature. These modified 3D graphene materials were compared with pristine 3-dimensional graphene (P3DG), which has fewer defects and no nitrogen in its structure. The different types of graphene obtained were characterized for morphological, structural, and compositional assessment through Scanning Electron Microscopy (SEM), Raman Spectroscopy, and X-ray Photoelectron Spectroscopy (XPS) techniques. Electrodes were fabricated, and electrochemical characterizations were conducted to evaluate the suitability of the three types of graphene for heavy metal sensing (lead) and Electric Double-Layer Capacitor (EDLC) applications. Initially, the various electrodes were treated with a mixture of 2.5 mM Ruhex (Ru (NH3)6Cl3 and 25 mM KCl to confirm that all the electrodes underwent a reversible and diffusion-controlled electrochemical process. Defect-rich graphene (N3DG-D) revealed the highest current density, followed by pristine (P3DG) and less-defect graphene (N3DG). Further, the three types of graphene were subjected to a sensing test by square wave anodic stripping voltammetry (SWASV) for lead detection. The obtained preliminary results showed that the N3DG material provided a great lead-sensing capability, detecting as little as 1 µM of lead in a water solution. The suitability of the electrodes to be employed in an Electric Double-Layer Capacitor (EDLC) was also comparatively assessed. Electrochemical characterization using 1 M sodium sulfate electrolyte was conducted through cyclic voltammetry and galvanostatic charge-discharge studies. The voltammogram and the galvanostatic charge-discharge (GCD) curves of the three types of graphene confirmed their suitability to be used as EDLC. The N3DG electrode proved superior with a gravimetric capacitance of 6.1 mF/g, followed by P3DG and N3DG, exhibiting 1.74 mF/g and 0.32 mF/g, respectively, at a current density of 2 A/g.

2.
Nanoscale Adv ; 6(2): 428-442, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235085

RESUMO

The unique electrical properties of carbon nanotubes (CNTs) are highly desired in many technological applications. Unfortunately, in practice, the electrical conductivity of most CNTs and their assemblies has fallen short of expectations. One reason for this poor performance is that electrical resistance develops at the interface between carbon nanomaterials and metal surfaces when traditional metal-metal type contacts are employed. Here, a method for overcoming this resistance using covalent bond formation between open-ended CNTs and Cu surfaces is investigated experimentally and supported by theoretical calculations. The open-ended CNTs are vertically oriented compared to the substrate and have carboxylic functional groups that react with aminophenyl groups (linkers) grafted on metal surfaces. The covalent bond formation, crosslinking carboxylic and amine, via amide bond formation occurs at 120 °C. The covalent bonding nature of the aminophenyl linker is demonstrated theoretically using (100), (110), and (111) Cu surfaces, and bridge-like bond formation between carbon and two adjacent Cu atoms is revealed. The electrical conductivity calculated for a single intramolecular-type junction supports covalent bond formation between Cu and CNTs. Experimentally, the robustness of the covalent bonding between vertically oriented CNTs is tested by exposing CNTs on Cu to sonication, which reveals that CNTs remain fixed to the Cu supports. Since bonding CNTs to metals was performed at low temperatures, the reported method of covalent bond formation is expected to facilitate the application of CNTs in multiple fields, including electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...