Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Function (Oxf) ; 4(2): zqac069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778746

RESUMO

We compared endogenous ω-3 PUFA production to supplementation for improving obesity-related metabolic dysfunction. Fat-1 transgenic mice, who endogenously convert exogenous ω-6 to ω-3 PUFA, and wild-type littermates were fed a high-fat diet and a daily dose of either ω-3 or ω-6 PUFA-rich oil for 12 wk. The endogenous ω-3 PUFA production improved glucose intolerance and insulin resistance but not hepatic steatosis. Conversely, ω-3 PUFA supplementation fully prevented hepatic steatosis but failed to improve insulin resistance. Both models increased hepatic levels of ω-3 PUFA-containing 2-monoacylglycerol and N-acylethanolamine congeners, and reduced levels of ω-6 PUFA-derived endocannabinoids with ω-3 PUFA supplementation being more efficacious. Reduced hepatic lipid accumulation associated with the endocannabinoidome metabolites EPEA and DHEA, which was causally demonstrated by lower lipid accumulation in oleic acid-treated hepatic cells treated with these metabolites. While both models induced a significant fecal enrichment of the beneficial Allobaculum genus, mice supplemented with ω-3 PUFA displayed additional changes in the gut microbiota functions with a significant reduction of fecal levels of the proinflammatory molecules lipopolysaccharide and flagellin. Multiple-factor analysis identify that the metabolic improvements induced by ω-3 PUFAs were accompanied by a reduced production of the proinflammatory cytokine TNFα, and that ω-3 PUFA supplementation had a stronger effect on improving the hepatic fatty acid profile than endogenous ω-3 PUFA. While endogenous ω-3 PUFA production preferably improves glucose tolerance and insulin resistance, ω-3 PUFA intake appears to be required to elicit selective changes in hepatic endocannabinoidome signaling that are essential to alleviate high-fat diet-induced hepatic steatosis.


Assuntos
Ácidos Graxos Ômega-3 , Fígado Gorduroso , Resistência à Insulina , Camundongos , Animais , Fígado Gorduroso/tratamento farmacológico , Camundongos Transgênicos , Suplementos Nutricionais
3.
Gut ; 72(5): 906-917, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36646449

RESUMO

BACKGROUND: Accumulating evidence indicates that some non-absorbed food additives, including emulsifiers carboxymethylcellulose (CMC) and polysorbate 80 (P80), can negatively impact intestinal microbiota, leading to microbiota encroachment, chronic low-grade intestinal inflammation and, subsequently, promotion of metabolic dysregulations. Detrimental impacts of emulsifier consumption on gut microbiota include depletion of the health-associated mucus-fortifying bacteria, Akkermansia muciniphila. OBJECTIVE: Investigate, in mice, the potential of administration of exogenous A. muciniphila as a means to protect against detrimental impacts of emulsifiers. RESULTS: Daily oral administration of A. muciniphila prevented phenotypic consequences of consumption of both CMC and P80, including hyperphagia, weight gain and dysglycaemia. A. muciniphila administration also counteracted the low-grade intestinal inflammation-induced CMC and P80. Furthermore, A. muciniphila supplementation prevented the proximal impacts of CMC and P80 on gut microbiota that are thought to drive low-grade chronic inflammation and metabolic dysregulations. Specifically, A. muciniphila prevented alterations in species composition and encroachment of gut microbiota that were otherwise induced by CMC and P80. Remarkably, we finally report that CMC and P80 altered the colonic transcriptome, while A. muciniphila largely protected against these alterations. CONCLUSION: Daily administration of A. muciniphila protects against the detrimental impact of emulsifiers on both the microbiota and host. These results support the notion that use of A. muciniphila as a probiotic can help maintain intestinal and metabolic health amidst the broad array of modern stresses that can promote chronic inflammatory diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Dieta , Inflamação/metabolismo , Verrucomicrobia
4.
Appl Environ Microbiol ; 88(14): e0073422, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35758759

RESUMO

Oral antibiotic treatment is often applied in animal studies in order to allow establishment of an introduced antibiotic-resistant bacterium in the gut. Here, we compared the application of streptomycin dosed orally in microcontainers to dosage through drinking water. The selective effect on a resistant bacterial strain, as well as the effects on fecal, luminal, and mucosal microbiota composition, were investigated. Three groups of rats (n = 10 per group) were orally dosed with microcontainers daily for 3 days. One of these groups (STR-M) received streptomycin-loaded microcontainers designed for release in the distal ileum, while the other two groups (controls [CTR] and STR-W) received empty microcontainers. The STR-W group was additionally dosed with streptomycin through the drinking water. A streptomycin-resistant Escherichia coli strain was orally inoculated into all animals. Three days after inoculation, the resistant E. coli was found only in the cecum and colon of animals receiving streptomycin in microcontainers but in all intestinal compartments of animals receiving streptomycin in the drinking water. 16S rRNA amplicon sequencing revealed significant changes in the fecal microbiota of both groups of streptomycin-treated animals. Investigation of the inner colonic mucus layer by confocal laser scanning microscopy and laser capture microdissection revealed no significant effect of streptomycin treatment on the mucus-inhabiting microbiota or on E. coli encroachment into the inner mucus. Streptomycin-loaded microcontainers thus enhanced proliferation of an introduced streptomycin-resistant E. coli in the cecum and colon without affecting the small intestine environment. While improvements of the drug delivery system are needed to facilitate optimal local concentration and release of streptomycin, the application of microcontainers provides new prospects for antibiotic treatment. IMPORTANCE Delivery of antibiotics in microcontainer devices designed for release at specific sites of the gut represents a novel approach which might reduce the amount of antibiotic needed to obtain a local selective effect. We propose that the application of microcontainers may have the potential to open novel opportunities for antibiotic treatment of humans and animals with fewer side effects on nontarget bacterial populations. In the current study, we therefore elucidated the effects of streptomycin, delivered in microcontainers coated with pH-sensitive lids, on the selective effect on a resistant bacterium, as well as on the surrounding intestinal microbiota in rats.


Assuntos
Água Potável , Estreptomicina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Colo , Escherichia coli/genética , Humanos , Mucosa Intestinal/microbiologia , RNA Ribossômico 16S , Ratos , Estreptomicina/farmacologia
5.
Nat Commun ; 13(1): 1343, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292630

RESUMO

Meta-analyses suggest that yogurt consumption reduces type 2 diabetes incidence in humans, but the molecular basis of these observations remains unknown. Here we show that dietary yogurt intake preserves whole-body glucose homeostasis and prevents hepatic insulin resistance and liver steatosis in a dietary mouse model of obesity-linked type 2 diabetes. Fecal microbiota transplantation studies reveal that these effects are partly linked to the gut microbiota. We further show that yogurt intake impacts the hepatic metabolome, notably maintaining the levels of branched chain hydroxy acids (BCHA) which correlate with improved metabolic parameters. These metabolites are generated upon milk fermentation and concentrated in yogurt. Remarkably, diet-induced obesity reduces plasma and tissue BCHA levels, and this is partly prevented by dietary yogurt intake. We further show that BCHA improve insulin action on glucose metabolism in liver and muscle cells, identifying BCHA as cell-autonomous metabolic regulators and potential mediators of yogurt's health effects.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Fermentação , Hidroxiácidos/farmacologia , Camundongos , Camundongos Obesos , Iogurte
7.
Nat Microbiol ; 7(2): 262-276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087228

RESUMO

Ulcerative colitis (UC) is driven by disruptions in host-microbiota homoeostasis, but current treatments exclusively target host inflammatory pathways. To understand how host-microbiota interactions become disrupted in UC, we collected and analysed six faecal- or serum-based omic datasets (metaproteomic, metabolomic, metagenomic, metapeptidomic and amplicon sequencing profiles of faecal samples and proteomic profiles of serum samples) from 40 UC patients at a single inflammatory bowel disease centre, as well as various clinical, endoscopic and histologic measures of disease activity. A validation cohort of 210 samples (73 UC, 117 Crohn's disease, 20 healthy controls) was collected and analysed separately and independently. Data integration across both cohorts showed that a subset of the clinically active UC patients had an overabundance of proteases that originated from the bacterium Bacteroides vulgatus. To test whether B. vulgatus proteases contribute to UC disease activity, we first profiled B. vulgatus proteases found in patients and bacterial cultures. Use of a broad-spectrum protease inhibitor improved B. vulgatus-induced barrier dysfunction in vitro, and prevented colitis in B. vulgatus monocolonized, IL10-deficient mice. Furthermore, transplantation of faeces from UC patients with a high abundance of B. vulgatus proteases into germfree mice induced colitis dependent on protease activity. These results, stemming from a multi-omics approach, improve understanding of functional microbiota alterations that drive UC and provide a resource for identifying other pathways that could be inhibited as a strategy to treat this disease.


Assuntos
Bacteroides/patogenicidade , Colite Ulcerativa/microbiologia , Colite Ulcerativa/fisiopatologia , Microbioma Gastrointestinal/genética , Metagenômica/métodos , Peptídeo Hidrolases/genética , Proteômica/métodos , Adulto , Animais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Bacteroides/enzimologia , Estudos de Coortes , Fezes/microbiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Metagenoma , Camundongos , Pessoa de Meia-Idade , Peptídeo Hidrolases/classificação , Índice de Gravidade de Doença
8.
Nat Commun ; 12(1): 3377, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099716

RESUMO

Animal models of human diseases are classically fed purified diets that contain casein as the unique protein source. We show that provision of a mixed protein source mirroring that found in the western diet exacerbates diet-induced obesity and insulin resistance by potentiating hepatic mTORC1/S6K1 signaling as compared to casein alone. These effects involve alterations in gut microbiota as shown by fecal microbiota transplantation studies. The detrimental impact of the mixed protein source is also linked with early changes in microbial production of branched-chain fatty acids (BCFA) and elevated plasma and hepatic acylcarnitines, indicative of aberrant mitochondrial fatty acid oxidation. We further show that the BCFA, isobutyric and isovaleric acid, increase glucose production and activate mTORC1/S6K1 in hepatocytes. Our findings demonstrate that alteration of dietary protein source exerts a rapid and robust impact on gut microbiota and BCFA with significant consequences for the development of obesity and insulin resistance.


Assuntos
Proteínas Alimentares/efeitos adversos , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Obesidade/etiologia , Ração Animal/efeitos adversos , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Sacarose Alimentar/efeitos adversos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Vida Livre de Germes , Gluconeogênese , Hepatócitos , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais
9.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G1014-G1033, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881354

RESUMO

Selecting the most relevant control diet is of critical importance for metabolic and intestinal studies in animal models. Chow and LF-purified diet differentially impact metabolic and gut microbiome outcomes resulting in major changes in intestinal integrity in LF-fed animals which contributes to altering metabolic homeostasis. Dietary fat and low fiber both contribute to the deleterious metabolic effect of purified HF diets through both selective and overlapping mechanisms.


Assuntos
Dieta , Gorduras na Dieta , Fibras na Dieta , Trato Gastrointestinal/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Ração Animal , Animais , Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina/fisiologia , Masculino , Camundongos
11.
Mucosal Immunol ; 14(5): 1006-1016, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33772148

RESUMO

During the last 20 years, a new field of research delineating the importance of the microbiota in health and diseases has emerged. Inappropriate host-microbiota interactions have been shown to trigger a wide range of chronic inflammatory diseases, and defining the exact mechanisms behind perturbations of such relationship, as well as ways by which these disturbances can lead to disease states, both remain to be fully elucidated. The mucosa-associated microbiota constitutes a recently studied microbial population closely linked with the promotion of chronic intestinal inflammation and associated disease states. This review will highlight seminal works that have brought into light the importance of the mucosa-associated microbiota in health and diseases, emphasizing the challenges and promises of expending the mucosal microbiology field of research.


Assuntos
Suscetibilidade a Doenças , Homeostase , Interações entre Hospedeiro e Microrganismos , Microbiota , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/microbiologia , Fatores Etários , Animais , Biomarcadores , Metabolismo Energético , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interações Microbianas , Microbiota/imunologia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia
12.
Mol Metab ; 47: 101183, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548500

RESUMO

OBJECTIVE: The intestinal epithelial barrier (IEB) restricts the passage of microbes and potentially harmful substances from the lumen through the paracellular space, and rupture of its integrity is associated with a variety of gastrointestinal disorders and extra-digestive diseases. Increased IEB permeability has been linked to disruption of metabolic homeostasis leading to obesity and type 2 diabetes. Interestingly, recent studies have uncovered compelling evidence that the AMP-activated protein kinase (AMPK) signaling pathway plays an important role in maintaining epithelial cell barrier function. However, our understanding of the function of intestinal AMPK in regulating IEB and glucose homeostasis remains sparse. METHODS: We generated mice lacking the two α1 and α2 AMPK catalytic subunits specifically in intestinal epithelial cells (IEC AMPK KO) and determined the physiological consequences of intestinal-specific deletion of AMPK in response to high-fat diet (HFD)-induced obesity. We combined histological, functional, and integrative analyses to ascertain the effects of gut AMPK loss on intestinal permeability in vivo and ex vivo and on the development of obesity and metabolic dysfunction. We also determined the impact of intestinal AMPK deletion in an inducible mouse model (i-IEC AMPK KO) by measuring IEB function, glucose homeostasis, and the composition of gut microbiota via fecal 16S rRNA sequencing. RESULTS: While there were no differences in in vivo intestinal permeability in WT and IEC AMPK KO mice, ex vivo transcellular and paracellular permeability measured in Ussing chambers was significantly increased in the distal colon of IEC AMPK KO mice. This was associated with a reduction in pSer425 GIV phosphorylation, a marker of leaky gut barrier. However, the expression of tight junction proteins in intestinal epithelial cells and pro-inflammatory cytokines in the lamina propria were not different between genotypes. Although the HFD-fed AMPK KO mice displayed suppression of the stress polarity signaling pathway and a concomitant increase in colon permeability, loss of intestinal AMPK did not exacerbate body weight gain or adiposity. Deletion of AMPK was also not sufficient to alter glucose homeostasis or the acute glucose-lowering action of metformin in control diet (CD)- or HFD-fed mice. CD-fed i-IEC AMPK KO mice also presented higher permeability in the distal colon under homeostatic conditions but, surprisingly, this was not detected upon HFD feeding. Alteration in epithelial barrier function in the i-IEC AMPK KO mice was associated with a shift in the gut microbiota composition with higher levels of Clostridiales and Desulfovibrionales. CONCLUSIONS: Altogether, our results revealed a significant role of intestinal AMPK in maintaining IEB integrity in the distal colon but not in regulating glucose homeostasis. Our data also highlight the complex interaction between gut microbiota and host AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Colo/metabolismo , Glucose/metabolismo , Homeostase , Animais , Bactérias/classificação , Bactérias/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Masculino , Metformina/farmacologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Permeabilidade/efeitos dos fármacos , RNA Ribossômico 16S
13.
J Nutr ; 150(10): 2673-2686, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32886125

RESUMO

BACKGROUND: Recent meta-analyses suggest that the consumption of fermented dairy products reduces type 2 diabetes and cardiovascular disease (CVD) risk, although the underlying mechanisms remain unclear. OBJECTIVE: We evaluated whether dairy protein products modulated gut microbiota and cardiometabolic features in mouse models of diet-induced obesity and CVD. METHODS: Eight-week-old C57BL/6J wild-type (WT) and LDLr-/-ApoB100/100 (LRKO) male mice were fed for 12 and 24 wk, respectively, with a high-fat/high-sucrose diet [66% kcal lipids, 22% kcal carbohydrates (100% sucrose), 12% kcal proteins]. The protein sources of the 4 diets were 100% nondairy protein (NDP), or 50% of the NDP energy replaced by milk (MP), milk fermented by Lactobacillus helveticus (FMP), or Greek-style yogurt (YP) protein. Fecal 16S rRNA gene-based amplicon sequencing, intestinal gene expression, and glucose tolerance test were conducted. Hepatic inflammation and circulating adhesion molecules were measured by multiplex assays. RESULTS: Feeding WT mice for 12 wk led to a 74% increase in body weight, whereas after 24 wk the LRKO mice had a 101.5% increase compared with initial body weight. Compared with NDP and MP, the consumption of FMP and YP modulated the gut microbiota composition in a similar clustering pattern, upregulating the Streptococcus genus in both genotypes. In WT mice, feeding YP compared with NDP increased the expression of genes involved in jejunal (Reg3b, 7.3-fold, P = 0.049) and ileal (Ocln, 1.7-fold, P = 0.047; Il1-ß,1.7-fold, P = 0.038; Nos2, 3.8-fold, P = 0.018) immunity and integrity. In LRKO mice, feeding YP compared with MP improved insulin sensitivity by 65% (P = 0.039). In LRKO mice, feeding with FMP versus NDP attenuated hepatic inflammation (monocyte chemoattractant protein 1, 2.1-fold, P ˂ 0.0001; IL1-ß, 5.7-fold, P = 0.0003; INF-γ, 1.7-fold, P = 0.002) whereas both FMP [vascular adhesion molecule 1 (VCAM1), 1.3-fold, P = 0.0003] and YP (VCAM1, 1.04-fold, P = 0.013; intracellular adhesion molecule 1, 1.4-fold, P = 0.028) decreased circulating adhesion molecules. CONCLUSION: Both fermented dairy protein products reduce cardiometabolic risk factors in diet-induced obese mice, possibly by modulating the gut microbiota.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Produtos Fermentados do Leite/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Metabólicas/prevenção & controle , Proteínas do Leite/farmacologia , Obesidade/induzido quimicamente , Animais , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Biomarcadores/sangue , Dieta , Dieta Hiperlipídica , Sacarose Alimentar/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Leite/química , Proteínas do Leite/química , Receptores de LDL/genética , Receptores de LDL/metabolismo
15.
Atherosclerosis ; 304: 9-21, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32563005

RESUMO

BACKGROUND AND AIMS: Poor dietary habits contribute to the obesity pandemic and related cardiovascular diseases but the respective impact of high saturated fat versus added sugar consumption remains debated. Herein, we aimed to disentangle the individual role of dietary fat versus sugar in cardiometabolic disease progression. METHODS: We fed pro-atherogenic LDLr-/-ApoB100/100 mice either a low-fat/high-sucrose (LFHS) or a high-fat/low-sucrose (HFLS) diet for 24 weeks. Weekly body weight gain was registered. 16S rRNA gene-based gut microbial analysis was performed to investigate gut microbial modulations. Intraperitoneal insulin (ipITT) and oral glucose tolerance test (oGTT) were conducted to assess glucose homeostasis and insulin sensitivity. Cytokines were assessed in fasted plasma, epididymal white adipose tissue and liver lysates. Heart function was evaluated by echocardiography. Aortic atheroma lesions were quantified according to the en face technique. RESULTS: HFLS feeding increased obesity, insulin resistance and dyslipidemia compared to LFHS feeding. Conversely, high sucrose consumption decreased gut microbial diversity while augmenting inflammation and the adaptative immune defense against metabolic endotoxemia and reduced macrophage cholesterol efflux capacity. This led to more severe cardiovascular complications as revealed by remarkably high level of atherosclerotic lesions and the early development of cardiac dysfunction in LFHS vs HFLS fed mice. CONCLUSIONS: We uncoupled obesity-associated insulin resistance from cardiovascular diseases and provided novel evidence that dietary sucrose, not fat, is the main driver of metabolic inflammation accelerating severe atherosclerosis in hyperlipidemic mice.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Sacarose Alimentar/efeitos adversos , Inflamação , Resistência à Insulina , Animais , Apolipoproteína B-100 , Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Microbioma Gastrointestinal , Hiperlipidemias , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Ribossômico 16S
16.
FASEB J ; 33(4): 4921-4935, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30596521

RESUMO

Given the growing evidence that gut dysfunction, including changes in gut microbiota composition, plays a critical role in the development of inflammation and metabolic diseases, the identification of novel probiotic bacteria with immunometabolic properties has recently attracted more attention. Herein, bacterial strains were first isolated from dairy products and human feces and then screened in vitro for their immunomodulatory activity. Five selected strains were further analyzed in vivo, using a mouse model of diet-induced obesity. C57BL/6 mice were fed a high-fat high-sucrose diet, in combination with 1 of 3 Lactobacillus strains (Lb38, L. plantarum; L79, L. paracasei/casei; Lb102, L. rhamnosus) or Bifidobacterium strains (Bf26, Bf141, 2 different strains of B. animalis ssp. lactis species) administered for 8 wk at 109 colony-forming units/d. Whereas 3 strains showed only modest (Lb38, Bf26) or no (L79) effects, Lb102 and Bf141 reduced diet-induced obesity, visceral fat accretion, and inflammation, concomitant with improvement of glucose tolerance and insulin sensitivity. Further analysis revealed that Lb102 and Bf141 enhanced intestinal integrity markers in association with selective changes in gut microbiota composition. We have thus identified 2 new potential probiotic bacterial strains with immunometabolic properties to alleviate obesity development and associated metabolic disturbances.-Le Barz, M., Daniel, N., Varin, T. V., Naimi, S., Demers-Mathieu, V., Pilon, G., Audy, J., Laurin, E., Roy, D., Urdaci, M. C., St-Gelais, D., Fliss, I, Marette, A. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity.


Assuntos
Bifidobacterium animalis/fisiologia , Lacticaseibacillus rhamnosus/fisiologia , Obesidade/dietoterapia , Obesidade/microbiologia , Probióticos/uso terapêutico , Tecido Adiposo/metabolismo , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , RNA Ribossômico 16S/genética
17.
Adv Nutr ; 8(6): 812-829, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29141967

RESUMO

Associations between yogurt intake and risk of diet-related cardiometabolic diseases (CMDs) have been the subject of recent research in epidemiologic nutrition. A healthy dietary pattern has been identified as a pillar for the prevention of weight gain and CMDs. Epidemiologic studies suggest that yogurt consumption is linked to healthy dietary patterns, lifestyles, and reduced risk of CMDs, particularly type 2 diabetes. However, to our knowledge, few to no randomized controlled trials have investigated yogurt intake in relation to cardiometabolic clinical outcomes. Furthermore, there has been little attempt to clarify the mechanisms that underlie the potential beneficial effects of yogurt consumption on CMDs. Yogurt is a nutrient-dense dairy food and has been suggested to reduce weight gain and prevent CMDs by contributing to intakes of protein, calcium, bioactive lipids, and several other micronutrients. In addition, fermentation with bacterial strains generates bioactive peptides, resulting in a potentially greater beneficial effect of yogurt on metabolic health than nonfermented dairy products such as milk. To date, there is little concrete evidence that the mechanisms proposed in observational studies to explain positive results of yogurt on CMDs or parameters are valid. Many proposed mechanisms are based on assumptions that commercial yogurts contain strain-specific probiotics, that viable yogurt cultures are present in adequate quantities, and that yogurt provides a minimum threshold dose of nutrients or bioactive components capable of exerting a physiologic effect. Therefore, the primary objective of this review is to investigate the plausibility of potential mechanisms commonly cited in the literature in order to shed light on the inverse associations reported between yogurt intake and various cardiometabolic health parameters that are related to its nutrient profile, bacterial constituents, and food matrix. This article reviews current gaps and challenges in identifying such mechanisms and provides a perspective on the research agenda to validate the proposed role of yogurt in protecting against CMDs.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Dieta/métodos , Ingestão de Alimentos/fisiologia , Síndrome Metabólica/prevenção & controle , Iogurte/microbiologia , Doenças Cardiovasculares/microbiologia , Humanos , Síndrome Metabólica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...