Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1066361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569830

RESUMO

Introduction: Imprinting broadly neutralizing antibody (bNAb) paratopes by shape complementary protein mimotopes represents a potential alternative for developing vaccine immunogens. This approach, designated as a Non-Cognate Ligand Strategy (NCLS), has recently been used for the identification of protein variants mimicking CD4 binding region epitope or membrane proximal external region (MPER) epitope of HIV-1 envelope (Env) glycoprotein. However, the potential of small binding proteins to mimic viral glycan-containing epitopes has not yet been verified. Methods: In this work, we employed a highly complex combinatorial Myomedin scaffold library to identify variants recognizing paratopes of super candidate bNAbs, PGT121 and PGT126, specific for HIV-1 V3 loop epitopes. Results: In the collection of Myomedins called MLD variants targeted to PGT121, three candidates competed with gp120 for binding to this bNAb in ELISA, thus suggesting an overlapping binding site and epitope-mimicking potential. Myomedins targeted to PGT126 designated MLB also provided variants that competed with gp120. Immunization of mice with MLB or MLD binders resulted in the production of anti-gp120 and -Env serum antibodies. Mouse hyper-immune sera elicited with MLB036, MLB041, MLB049, and MLD108 moderately neutralized 8-to-10 of 22 tested HIV-1-pseudotyped viruses of A, B, and C clades in vitro. Discussion: Our data demonstrate that Myomedin-derived variants can mimic particular V3 glycan epitopes of prominent anti-HIV-1 bNAbs, ascertain the potential of particular glycans controlling neutralizing sensitivity of individual HIV-1 pseudoviruses, and represent promising prophylactic candidates for HIV-1 vaccine development.


Assuntos
Anticorpos Anti-HIV , HIV-1 , Animais , Camundongos , Epitopos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Proteína gp120 do Envelope de HIV , Polissacarídeos
2.
Nat Commun ; 12(1): 3616, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127663

RESUMO

Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the role of dynamics in evolution, starting from the evolvable and thermostable ancestral protein AncHLD-RLuc which catalyses both dehalogenase and luciferase reactions. Insertion-deletion (InDel) backbone mutagenesis of AncHLD-RLuc challenged the scaffold dynamics. Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics (based on crystallographic B-factors, hydrogen exchange, and molecular dynamics simulations). An anisotropic network model highlights the importance of the conformational flexibility of a loop-helix fragment of Renilla luciferases for ligand binding. Transplantation of this dynamic fragment leads to lower product inhibition and highly stable glow-type bioluminescence. The success of our approach suggests that a strategy comprising (i) constructing a stable and evolvable template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of dynamic features, can lead to functionally innovative proteins.


Assuntos
Luciferases/química , Luciferases/genética , Luciferases/metabolismo , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Animais , Sítios de Ligação , Catálise , Estabilidade Enzimática , Cinética , Luciferases de Renilla/química , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Mamíferos , Camundongos , Mutagênese , Mutação , Células NIH 3T3 , Conformação Proteica , Temperatura
3.
Virulence ; 12(1): 1271-1287, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33993840

RESUMO

One of the proposed strategies for the development of a more efficient HIV-1 vaccine is based on the identification of proteins binding to a paratope of chosen broadly neutralizing antibody (bNAb) that will mimic cognate HIV-1 Env (glyco)protein epitope and could be used as potent immunogens for induction of protective virus-neutralizing antibodies in the immunized individuals. To verify this "non-cognate ligand" concept, we developed a highly complex combinatorial library designed on a scaffold of human myomesin-1 protein domain and selected proteins called Myomedins specifically binding to variable regions of HIV-1 broadly neutralizing antibody 10E8. Immunization of mice with these Myomedin variants elicited the production of HIV-1 Env-specific antibodies. Hyperimmune sera bound to Env pseudotyped viruses and weakly/moderately neutralized 54% of tested clade A, B, C, and AE pseudotyped viruses variants in vitro. These results demonstrate that Myomedin variants have the potential to mimic Env epitopes and could be used as potential HIV-1 vaccine components.


Assuntos
Infecções por HIV , HIV-1 , Animais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos , Anticorpos Anti-HIV , Infecções por HIV/prevenção & controle , HIV-1/genética , Camundongos , Pseudotipagem Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...