Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111701

RESUMO

Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.

2.
J Vis Exp ; (184)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35816005

RESUMO

The ultracentrifugation-based process is considered the common method for small extracellular vesicles (sEVs) isolation. However, the yield from this isolation method is relatively lower, and these methods are inefficient in separating sEV subtypes. This study demonstrates a simple benchtop filtration method to isolate human umbilical cord-derived MSC small extracellular vesicles (hUC-MSC-sEVs), successfully separated by ultrafiltration from the conditioned medium of hUC-MSCs. The size distribution, protein concentration, exosomal markers (CD9, CD81, TSG101), and morphology of the isolated hUC-MSC-sEVs were characterized with nanoparticle tracking analysis, BCA protein assay, western blot, and transmission electron microscope, respectively. The isolated hUC-MSC-sEVs' size was 30-200 nm, with a particle concentration of 7.75 × 1010 particles/mL and a protein concentration of 80 µg/mL. Positive bands for exosomal markers CD9, CD81, and TSG101 were observed. This study showed that hUC-MSC-sEVs were successfully isolated from hUC-MSCs conditioned medium, and characterization showed that the isolated product fulfilled the criteria mentioned by Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV 2018).


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Meios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Ultracentrifugação , Cordão Umbilical
3.
Pharmaceutics ; 14(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336023

RESUMO

Human umbilical cord mesenchymal stem cell-derived small extracellular vesicle (hUC-MSCs-sEVs) therapy has shown promising results to treat diabetes mellitus in preclinical studies. However, the dosage of MSCs-sEVs in animal studies, up to 10 mg/kg, was considered high and may be impractical for future clinical application. This study aims to investigate the efficacy of low-dose hUC-MSCs-sEVs treatment on human skeletal muscle cells (HSkMCs) and type 2 diabetes mellitus (T2DM) rats. Treatment with hUC-MSCs-sEVs up to 100 µg/mL for 48 h showed no significant cytotoxicity. Interestingly, 20 µg/mL of hUC-MSCs-sEVs-treated HSkMCs increased glucose uptake by 80-90% compared to untreated cells. The hUC-MSCs-sEVs treatment at 1 mg/kg improved glucose tolerance in T2DM rats and showed a protective effect on complete blood count. Moreover, an improvement in serum HbA1c was observed in diabetic rats treated with 0.5 and 1 mg/kg of hUC-MSCs-sEVs, and hUC-MSCs. The biochemical tests of hUC-MSCs-sEVs treatment groups showed no significant creatinine changes, elevated alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels compared to the normal group. Histological analysis revealed that hUC-MSCs-sEVs relieved the structural damage to the pancreas, kidney and liver. The findings suggest that hUC-MSCs-sEVs could ameliorate insulin resistance and exert protective effects on T2DM rats. Therefore, hUC-MSCs-sEVs could serve as a potential therapy for diabetes mellitus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...