Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1104725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776554

RESUMO

Lipid droplets are fat storage organelles ubiquitously distributed across the eukaryotic kingdom. They have a central role in regulating lipid metabolism and undergo a dynamic turnover of biogenesis and breakdown to meet cellular requirements for fatty acids, including polyunsaturated fatty acids. Polyunsaturated fatty acids esterified in membrane phospholipids define membrane fluidity and can be released by the activity of phospholipases A2 to act as ligands for nuclear receptors or to be metabolized into a wide spectrum of lipid signaling mediators. Polyunsaturated fatty acids in membrane phospholipids are also highly susceptible to lipid peroxidation, which if left uncontrolled leads to ferroptotic cell death. On the one hand, lipid droplets act as antioxidant organelles that control polyunsaturated fatty acid storage in triglycerides in order to reduce membrane lipid peroxidation, preserve organelle function and prevent cell death, including ferroptosis. On the other hand, lipid droplet breakdown fine-tunes the delivery of polyunsaturated fatty acids into metabolic and signaling pathways, but unrestricted lipid droplet breakdown may also lead to the release of lethal levels of polyunsaturated fatty acids. Precise regulation of lipid droplet turnover is thus essential for polyunsaturated fatty acid distribution and cellular homeostasis. In this review, we focus on emerging aspects of lipid droplet-mediated regulation of polyunsaturated fatty acid trafficking, including the management of membrane lipid peroxidation, ferroptosis and lipid mediator signaling.

2.
Biochimie ; 188: 12-15, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33811938

RESUMO

Bile secretion by hepatocytes is an osmotic process. The output of bile salts and other organic anions (e.g. glutathione), through the bile salt transporter BSEP/ABCB11 and the organic anion transporter MRP2/ABCC2, respectively, are considered to be the major osmotic driving forces for water secretion into bile canaliculi mainly via aquaporin-8 (AQP8) channels. The down-regulated canalicular expression of these key solute transporters and AQP8 would be a primary event in the establishment of hepatocellular cholestasis. Recent studies in animal models of hepatocellular cholestasis show that the hepatic delivery of AdhAQP1, an adenovector encoding for the archetypical water channel human aquaporin-1 (hAQP1), improves bile secretion and restores to normal the elevated serum bile salt levels. AdhAQP1-transduced hepatocytes show that the canalicularly-expressed hAQP1 not only enhances osmotic membrane water permeability but also induces the transport activities of BSEP/ABCB11 and MRP2/ABCC2 by redistribution in canalicular cholesterol-rich microdomains likely through interactions with the cholesterol-binding protein caveolin-1. Thus, the hepatic gene transfer of hAQP1 improves the bile secretory failure in hepatocellular cholestasis by increasing both biliary output and choleretic efficiency of key osmotic solutes, such as, bile salts and glutathione. The study of hepatocyte aquaporins has provided new insights into the mechanisms of bile formation and cholestasis, and may lead to innovative treatments for cholestatic liver diseases.


Assuntos
Aquaporinas/genética , Colestase/genética , Colestase/terapia , Terapia Genética/métodos , Animais , Bile/metabolismo , Hepatócitos/metabolismo , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla
3.
Biochimie ; 188: 16-19, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33493534

RESUMO

We recently provided evidence suggesting that mitochondrial aquaporin-8 (mtAQP8), a channel protein able to conduct H2O2, is involved in the modulation of hepatocyte cholesterogenesis. To expand that study, we cultured human hepatocyte-derived Huh-7 cells in medium with lipoprotein-deficient serum (LPDS) to induce the de novo synthesis of cholesterol and fatty acids. We found that LPDS induced mtAQP8 expression and that AQP8 gene silencing significantly down-regulated the LPDS-induced synthesis of cholesterol and fatty acids as well as the expression of the corresponding key biosynthetic enzymes, 3-hydroxy-3-methylglutaryl-CoA reductase and fatty acid synthase. Our data further support a regulatory role of mtAQP8 in hepatocyte lipid homeostasis.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Hepatócitos/metabolismo , Lipogênese/fisiologia , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Colesterol/biossíntese , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/biossíntese , Inativação Gênica , Homeostase , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Lipoproteínas/deficiência
4.
Biochimie ; 165: 179-182, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377196

RESUMO

Multidrug resistance-associated protein 2 (MRP2/ABCC2), a hepatocyte canalicular transporter involved in bile secretion, is downregulated in cholestasis triggered by lipopolysaccharide. The human aquaporin-1 (hAQP1) adenovirus-mediated gene transfer to liver improves cholestasis by incompletely defined mechanisms. Here we found that hAQP1 did not affect MRP2/ABCC2 expression, but significantly increased its transport activity assessed in situ with endogenous and exogenous substrates, likely by a hAQP1-induced increase in canalicular membrane cholesterol amount. Our results suggest that hAQP1-induced MRP2/ABCC2 activation contributes to the cholestasis improvement.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aquaporina 1/fisiologia , Bile/metabolismo , Colestase/metabolismo , Hepatócitos/metabolismo , Animais , Aquaporina 1/genética , Colestase/terapia , Técnicas de Transferência de Genes , Hepatócitos/citologia , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Ratos Wistar
5.
Data Brief ; 23: 103722, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372390

RESUMO

This article reports experimental data related to the research article entitled "Mitochondrial aquaporin-8 is involved in SREBP-controlled hepatocyte cholesterol biosynthesis" [Danielli et al., 2019]. We present data about hydrogen peroxide (H2O2) release from mitochondria isolated from rat hepatocytes with or without silencing of aquaporin-8 (AQP8) protein expression. The rate of mitochondrial H2O2 release (pmoles/min/mg mitochondrial protein) was found to be decreased by about 50% in AQP8-knockdown mitochondria.

6.
Free Radic Biol Med ; 131: 370-375, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30579780

RESUMO

Cholesterol, via sterol regulatory element-binding protein (SREBP) transcription factors, activates or represses genes involved in its hepatic biosynthetic pathway, and also modulates the expression of hepatocyte mitochondrial aquaporin-8 (mtAQP8), a channel that can function as peroxiporin by facilitating the transmembrane diffusion of H2O2. Here we tested the hypothesis that mtAQP8 is involved in the SREBP-mediated regulation of hepatocyte cholesterol biosynthesis. Using human hepatocyte-derived Huh-7 cells and primary rat hepatocytes, we found that mtAQP8 knockdown significantly downregulated de novo cholesterol synthesis as well as protein expressions of SREBP-2 and its target gene, a rate-limiting enzyme in cholesterol synthesis 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR). In contrast, adenovirus-mediated human AQP8 mitochondrial expression significantly increased de novo cholesterol synthesis and protein expressions of SREBP-2 and HMGCR. In mtAQP8-overexpressed hepatocytes, mitochondrial H2O2 release was found to be increased; and a mitochondria-targeted antioxidant prevented the upregulation of mitochondrial H2O2 release and that of cholesterol synthesis. Our results suggest that peroxiporin mtAQP8 plays a role in the SREBP-controlled hepatocyte cholesterogenesis, a finding that might be relevant to cholesterol-related metabolic disorders.


Assuntos
Aquaporinas/genética , Colesterol/biossíntese , Hepatócitos/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Mitocôndrias/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Animais , Aquaporinas/antagonistas & inibidores , Aquaporinas/metabolismo , Linhagem Celular , Difusão , Regulação da Expressão Gênica , Hepatócitos/citologia , Humanos , Peróxido de Hidrogênio/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Lipogênese/genética , Fígado/citologia , Fígado/metabolismo , Masculino , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
7.
IUBMB Life ; 69(12): 978-984, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29087027

RESUMO

Lipopolysaccharides (LPS) are known to cause cholestasis in sepsis. There is evidence that a defective expression of canalicular aquaporin water channels contributes to bile secretory failure in LPS-induced cholestasis. Thus, we studied whether the hepatic adenovirus-mediated transfer of human aquaporin-1 gene (haqp1) can improve the cholestasis induced by LPS. Adenoviral vector encoding hAQP1 (AdhAQP1) or control vector was administered to rats by retrograde intrabiliary infusion. Hepatocyte canalicular hAQP1 expression was assessed by liver immunostaining and immunoblotting in purified plasma membranes. LPS reduced bile flow and biliary bile acid excretion by 30% and 45%, respectively. AdhAQP1-treatment normalized both bile flow and biliary bile acid excretion in LPS-induced cholestasis. Moreover, markedly elevated serum bile acid levels in cholestatic rats, were also normalized with the AdhAQP1 hepatic transduction. Bile flow and serum or biliary bile acids in normal rats were not significantly altered by AdhAQP1. AdhAQP1 delivery unaffected the downregulated protein expression of canalicular bile salt export pump (BSEP/ABCB11) in cholestasis, but improved its transport activity restoring reduced canalicular cholesterol content. Our data suggest that the adenovirus-mediated hepatocyte hAQP1 expression improves LPS-induced cholestasis in rats by stimulating the BSEP/ABCB11-mediated biliary bile acid excretion; a finding that might contribute to the understanding and treatment of sepsis-associated cholestatic diseases. © 2017 IUBMB Life, 69(12):978-984, 2017.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Adenoviridae/genética , Aquaporina 1/genética , Ácidos e Sais Biliares/metabolismo , Colestase/terapia , Hepatócitos/metabolismo , Sepse/terapia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenoviridae/metabolismo , Animais , Aquaporina 1/metabolismo , Transporte Biológico , Colestase/induzido quimicamente , Colestase/genética , Colestase/patologia , Colesterol/metabolismo , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hepatócitos/patologia , Humanos , Lipopolissacarídeos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos , Ratos Wistar , Reologia , Sepse/induzido quimicamente , Sepse/genética , Sepse/patologia , Transgenes
8.
IUBMB Life ; 69(5): 341-346, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28322010

RESUMO

Hepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-ß-cyclodextrin (mßCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under such conditions, mtAQP8 mRNA and protein expressions were significantly reduced. In contrast, cholesterol depletion using mßCD alone increased SREBP-1 and 2 activation and upregulated HMGCR and mtAQP8 mRNA and protein expressions. The results suggest that cholesterol can regulate transcriptionally human hepatocyte mtAQP8 expression likely via SREBPs. The functional implications of our findings are discussed. © 2017 IUBMB Life, 69(5):341-346, 2017.


Assuntos
Aquaporinas/metabolismo , Colesterol/metabolismo , Hepatócitos/metabolismo , Aquaporinas/genética , Linhagem Celular , Colesterol/farmacocinética , Hepatócitos/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Mitocôndrias/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , beta-Ciclodextrinas/farmacocinética
9.
Bioorg Med Chem Lett ; 26(16): 3955-7, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422336

RESUMO

Levoglucosenone has been used as template for the synthesis of a wide variety of compounds with an impressive structural variability. However, scarce work has been done regarding the generation of new bioactive entities. Here we report the cytotoxic effect of levoglucosenone and some related derivatives against hepatocarcinoma cell lines. Compounds were obtained in only one synthetic step and one of them showed an activity within the range of IC50 values of cisplatin, a frequently administered chemotherapy drug.


Assuntos
Antineoplásicos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Glucose/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucose/síntese química , Glucose/química , Glucose/toxicidade , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
10.
Hepatology ; 64(2): 535-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26999313

RESUMO

UNLABELLED: The adenoviral gene transfer of human aquaporin-1 (hAQP1) water channels to the liver of 17α-ethinylestradiol-induced cholestatic rats improves bile flow, in part by enhancing canalicular hAQP1-mediated osmotic water secretion. To gain insight into the mechanisms of 17α-ethinylestradiol cholestasis improvement, we studied the biliary output of bile salts (BS) and the functional expression of the canalicular BS export pump (BSEP; ABCB11). Adenovector encoding hAQP1 (AdhAQP1) or control vector was administered by retrograde intrabiliary infusion. AdhAQP1-transduced cholestatic rats increased the biliary output of major endogenous BS (50%-80%, P < 0.05) as well as that of taurocholate administered in choleretic or trace radiolabel amounts (around 60%, P < 0.05). Moreover, liver transduction with AdhAQP1 normalized serum BS levels, otherwise markedly elevated in cholestatic animals. AdhAQP1 treatment was unable to improve BSEP protein expression in cholestasis; however, its transport activity, assessed by adenosine triphosphate-dependent taurocholate transport in canalicular membrane vesicles, was induced by 90% (P < 0.05). AdhAQP1 administration in noncholestatic rats induced no significant changes in either biliary BS output or BSEP activity. Canalicular BSEP, mostly present in raft (high cholesterol) microdomains in control rats, was largely found in nonraft (low cholesterol) microdomains in cholestasis. Considering that BSEP activity directly depends on canalicular membrane cholesterol content, decreased BSEP presence in rafts may contribute to BSEP activity decline in 17α-ethinylestradiol cholestasis. In AdhAQP1-transduced cholestatic rats, BSEP showed a canalicular microdomain distribution similar to that of control rats, which provides an explanation for the improved BSEP activity. CONCLUSION: Hepatocyte canalicular expression of hAQP1 through adenoviral gene transfer promotes biliary BS output by modulating BSEP activity in estrogen-induced cholestasis, a novel finding that might help us to better understand and treat cholestatic disorders. (Hepatology 2016;64:535-548).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aquaporina 1/genética , Ácidos e Sais Biliares/metabolismo , Colestase/terapia , Terapia Genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Aquaporina 1/metabolismo , Ácidos e Sais Biliares/sangue , Canalículos Biliares/metabolismo , Colestase/induzido quimicamente , Etinilestradiol , Hepatócitos/metabolismo , Humanos , Masculino , Ratos Wistar
11.
Anal Biochem ; 495: 1-2, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656923

RESUMO

Lipid-based transfection reagents are widely used for delivery of small interfering RNA into cells. We examined whether the commonly used commercial transfection reagents DharmaFECT-4 and Lipofectamine 2000 can interfere with lipid metabolism by studying cholesterogenesis. Cholesterol de novo synthesis from [(14)C]acetate was assessed in human hepatocyte-derived Huh-7 cells. The results revealed that DharmaFECT, but not Lipofectamine, markedly inhibited cholesterol biosynthesis by approximately 70%. Cell viability was not significantly altered. These findings suggest that caution is required in the choice of certain lipid-based transfection reagents for gene silencing experiments, particularly when assessing cholesterol metabolism.


Assuntos
Colesterol/biossíntese , Lipídeos/química , Transfecção , Linhagem Celular , Humanos , Indicadores e Reagentes/farmacologia , L-Lactato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , RNA Interferente Pequeno/metabolismo
12.
Biochem Cell Biol ; 93(4): 417-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26194146

RESUMO

It has been proposed that, during metabolic acidosis, the liver downregulates mitochondrial ammonia detoxification via ureagenesis, a bicarbonate-consuming process. Since we previously demonstrated that hepatocyte mitochondrial aquaporin-8 channels (mtAQP8) facilitate the uptake of ammonia and its metabolism into urea, we studied whether mtAQP8 is involved in the liver adaptive response to acidosis. Primary cultured rat hepatocytes were adapted to acidosis by exposing them to culture medium at pH 7.0 for 40 h. Control cells were exposed to pH 7.4. Hepatocytes exposed to acid medium showed a decrease in mtAQP8 protein expression (-30%, p < 0.05). Ureagenesis from ammonia was assessed by incubating the cells with (15)N-labeled ammonia and measuring (15)N-labeled urea synthesis by nuclear magnetic resonance. Reduced ureagenesis was found in acidified hepatocytes (-31%, p < 0.05). In vivo studies in rats subjected to 7 days acidosis also showed decreased protein expression of hepatic mtAQP8 (-50%, p < 0.05) and reduced liver urea content (-35%; p < 0.05). In conclusion, our in vitro and in vivo data suggest that hepatic mtAQP8 expression is downregulated in acidosis, a mechanism that may contribute to decreased ureagenesis from ammonia in response to acidosis.


Assuntos
Acidose/metabolismo , Amônia/metabolismo , Aquaporinas/metabolismo , Regulação para Baixo , Mitocôndrias/metabolismo , Ureia/metabolismo , Animais , Células Cultivadas , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...